

AGeneral Description

The LA1117 is a low dropout three terminal regulator that features a low quiescent current, low input, output and dropout voltages, as well as over temperature shutdown. The output voltage of the LA1117 is set at the factory and trimmed to $\pm 1\%$. The LA1117 is stable with a ceramic output capacitor of 4.7uF.

This family of regulators can provide either a stand-alone power supply solution or act as a post regulator for switch mode power supplies. They are particularly well suited for applications requiring low input and output voltage.

Features

- Min. 1.1A Output Current Limiter
- 1.4V Maximum Full load Dropout Voltage
- 3-Terminal Adjustable or Fixed, 1.5V, 2.5V, 3.3V and 5V Output Voltage
- Fast Load Transient Response
- Built-in Over Current Protection
- Built-in Over Temperature Protection
- Good Noise Rejection Capability
- Stable with Ceramic Cap of 4.7uF
- Package: TO252-2L, SOT89-3L, TO220-3L and SOT223-3L
- RoHS Compliant & Halogen Free

Applications

- PC Mother Board Applications
- LCD TV/ Monitors
- Communication Devices

Please be aware that an **Important Notice** concerning availability, disclaimers, and use in critical applications of LSC products is at the end of this document.

LA1117 Rev. 07 1 of 18 2016/04/08

Block Diagram

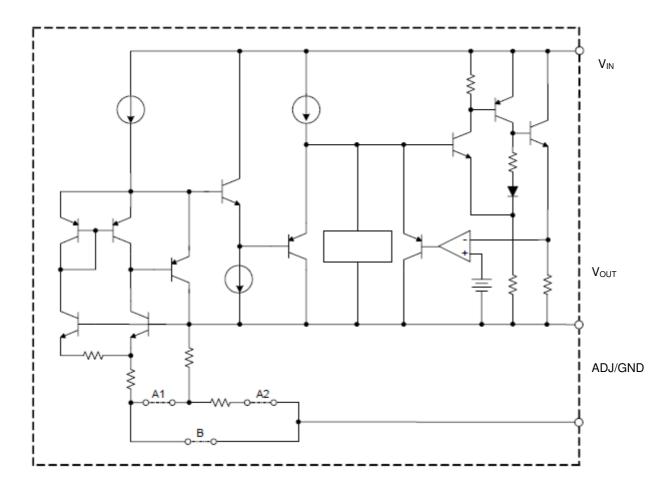
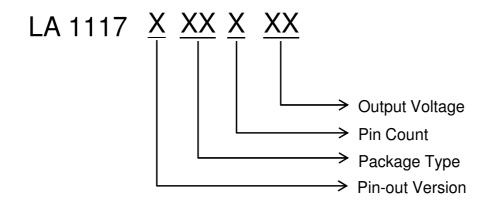
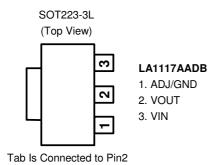
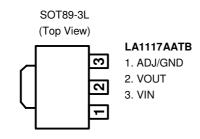
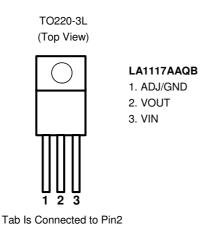



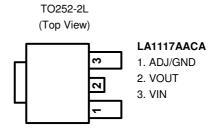
Figure 1 . Block Diagram

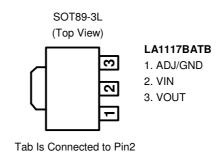

Ordering Information



Pin-o	ut Version	Package Type	Pin Count	Output Voltage
A (TO-252-2L) (SOT89-3L) (SOT220-3L) (SOT223-3L)	1. ADJ/GND 2. VOUT 3. VIN	AD : SOT223 AT : SOT89 AC : TO252 AQ : TO220	A:2 B:3	ADJ: Adjustable 150: 1.50V 250: 2.50V 330: 3.30V 500: 5.00V
B (SOT89-3L)	1. ADJ/GND 2. VIN 3. VOUT			




Pin Assignment



Tab Is Connected to Pin2

Tab Is Connected to Pin2

Pin Descriptions

Pin Name	Pin Description
ADJ/GND	Vout Adjusting Pin or Ground Pin
VOUT	Voltage Output
VIN	Voltage Input

Absolute Maximum Ratings (at TA=25°C)

Operate over the "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to such conditions for extended time may still affect the reliability of the device.

Parameter	Value		
DC Supply Voltage	-0.3-18V		
Operation Junction Temperature F	Range (note1)	-40~150°C	
Storage Temperature Range		-65 ℃ to 150 ℃	
Lead Temperature		260 °C, to 10 sec	
ESD Withstand Voltage: - Human Body Model (HBM), Model = 2 - Machine Model (MM) Model = B		2000V 200V	
	SOT223-3L	31 ℃/W	
Thermal Resistance	SOT89-3L	46 ℃/W	
(Junction to Case) (θ_{JC})	TO220-3L	15 ℃/W	
	TO252-2L	30 ℃/W	
	SOT223-3L	125 ℃/W	
Thermal Resistance	SOT89-3L	180 ℃/W	
(Junction to Ambient) (θ_{JA})	TO220-3L	55 ℃/W	
	TO252-2L	140 ℃/W	
	SOT223-3L	800 mW	
Davis Diagla diag	SOT89-3L	550 mW	
Power Dissipation	TO220-3L	1800 mW	
	TO252-2L	1000 mW	
Moisture Sensitivity		Please Refer The Moisture Sensitivity Label on the IC packing bag material for more detail.	

Note 1: Maximum Junction Temperature is the temperature limit of this device. Over this limit, the IC may be damaged permanently. Operation Junction Temperature Range is the range the device intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, please refer the Electrical Characteristics

Recommended Operating Conditions

Characteristics	Symbol	Min	Max	Unit
Operating Junction Temperature Range	T_J	-40	125 (Note2)	ပ

Note 2 : If the IC experienced OTP, then the temperature may need to drop to <125 ℃ to let the IC recover.

Electrical Characteristics

TA=25 °C, C_{IN} = C_{OUT} =4.7 μF ceramic capacitance, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Reference Voltage	V_{REF}	LA1117-ADJ V _{IN} =V _{OUT} + 1.5V, I _{OUT} = 10mA	1.238	1.250	1.262	V
		LA1117-1.5V 3V ≤ V _{IN} ≤ 12V, I _{OUT} = 10mA	1.485	1.500	1.515	
Output Valtage	V_OUT	LA1117-2.5V 4V ≤ V _{IN} ≤ 12V, I _{OUT} = 10mA	2.475	2.500	2.525	V
Output Voltage	VOUT	LA1117-3.3V $4.8V \le V_{IN} \le 12V$, $I_{OUT} = 10$ mA	3.267	3.300	3.333	V
		LA1117-5.0V $6.5V \le V_{IN} \le 12V$, $I_{OUT} = 10mA$	4.950	5.000	5.05	
Line Regulation (=Δ V _{OUT} /Δ V _{IN})	ΔV _{OUT}	LA1117- ADJ/1.5V/2.5V/3.3V/5.0V V_{OUT} +1.5V < V_{IN} < 12V, I_{OUT} = 10mA (Note 3)		0.04	0.2	%
		LA1117-ADJ $V_{IN} = V_{OUT}+1.5V$, 10mA < I_{OUT} < 1A (Note 3)			1	%
	V _{оит}	LA1117-1.5V $V_{IN} = 3.0V, 10mA < I_{OUT} < 1A \text{ (Note 3)}$		12	15	mV
Load Regulation $(=\Delta V_{OUT})$		LA1117-2.5 V $V_{IN} = 4.0V$, 10mA < I_{OUT} < 1A (Note 3)		20	25	mV
		LA1117-3.3 V $V_{IN} = 5.0V$, $10mA < I_{OUT} < 1A$ (Note 3)		26	33	mV
		LA1117-5.0 V $V_{IN} = 8.0V$, $10mA < I_{OUT} < 1A$ (Note 3)		40	50	mV
Dunner t Veltage	V	LA1117- ADJ/1.5V/2.5V/3.3V/5.0V $I_{OUT} = 0.8A, \Delta V_{OUT} = V_{OUT} X 1\%$ -40 °C ≤ TJ ≤ 125 °C		1.2	1.3	V
Dropout Voltage	V_{DO}	LA1117- ADJ/1.5V/2.5V/3.3V/5.0V $I_{OUT} = 1.0A$, $\Delta V_{OUT} = V_{OUT} X$ 1% -40 °C ≤ TJ ≤ 125 °C		1.3	1.4	V
Output Current Limit (Note4)	I _{LIMIT}	LA1117- ADJ/1.5V/2.5V/3.3V/5.0V (V _{IN} -V _{OUT})= 2V	1100			mA
Minimum Required Load Current	I _{L(min)}	LA1117- ADJ/1.5V/2.5V/3.3V/5.0V -40 °C ≤ TJ ≤ 125 °C		5	10	mA
Adjust Pin Current	I _{ADJ}	LA1117–ADJ, V _{IN} =V _{OUT} +1.5V, I _{OUT} =10mA		50	120	uA
Adjust Pin Current Change	ΔI_{ADJ}	LA1117–ADJ $V_{IN}=V_{OUT}+1.5V$ to $V_{IN}=12V$, $I_{OUT}=10$ mA to 800 mA		1.5	5	uA

LA1117 Rev. 07 6 of 18 2016/04/08

Electrical Characteristics (Contd.)

TA=25 °C, C_{IN} = C_{OUT} =4.7 μ F ceramic capacitance, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Ripple Rejection (Note 4)	PSRR	V_{IN} =5V, V_{OUT} =1.25V, I_{OUT} =0.01A, 120 Hz sine wave, C_{OUT} =4.7uF ceramic Cap.		70		dB
RMS Output Noise (% of VOUT) (Note 4)	e _N	10Hz ≤ f ≤ 10 kHz		0.003		%
V _{OUT} Temperature Coefficient (Note 4)	TC	TA = 25°C, 30ms Pulse		100		ppm/℃
Thermal Shutdown (Note 4)	T_{SD}			150		℃
Thermal Shutdown Hysteresis	$T_{SD(Hys)}$			25		°C

Note 3: Line and load regulation are measured by low duty cycle pulse testing and the junction temperature is kept at 25 degree C. The V_{OUT} of load regulation is measured at the out lead.

Note 4: Guarantee by design. Not 100% tested in manufacturing.

Application Circuit

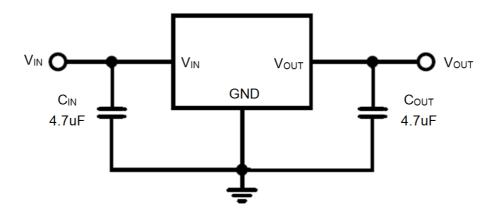


Figure 3(a). Typical Application Circuit – Fixed Output Versions

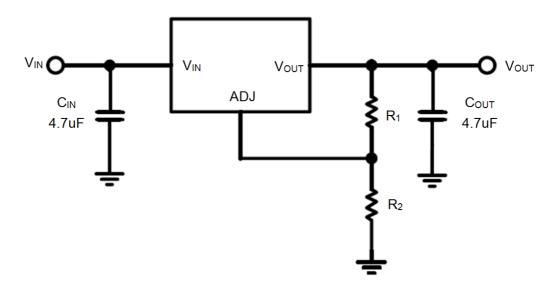
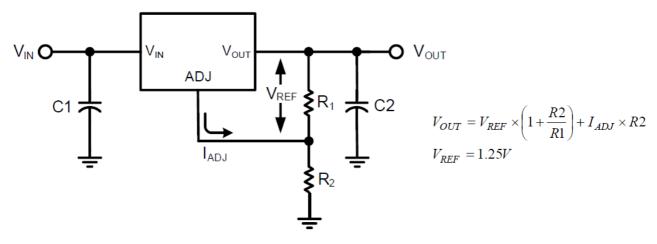
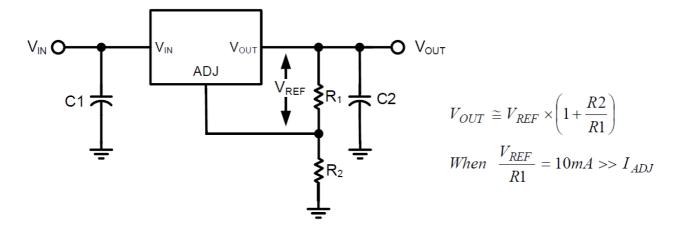
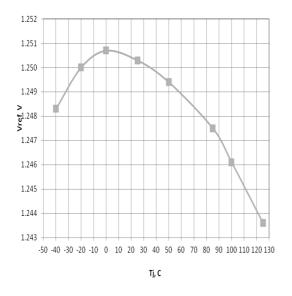



Figure 3(b). Typical Application Circuit – Adjustable Output Version


The LA1117 keeps a constant 1.25V between the output pin and the adjust pin. By placing a resistor R_1 across these two pins a constant current flows through R_1 , adding to the I_{ADJ} current and into the R_2 resistor producing a voltage equal to the $(1.25/R_1)^*R_2 + I_{ADJ}^*R_2$ which will be added to the 1.25V to set the output voltage.

Application Circuit (Contd.)



This is summarized in the above equation. Since the minimum load current requirement of the LA1117 is 10mA, R_1 is typically selected to be 121Ω resistor so that it automatically satisfies the minimum current requirement. Notice that since I_{ADJ} is typically in the range of 50uA it only adds a small error to the output voltage and should only be considered when a very precise output voltage setting is required. For example, in a typical 3.3V application where $R1=121\Omega$ and $R2=200\Omega$. The C1, C2 capacitor are 4.7uF (Low ESR Ceramic, MLCC).

Typical Characteristics

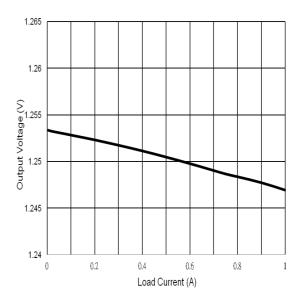


Figure 4. Reference Voltage VS Junction Temperature

Figure 5. Output Voltage VS Load Current

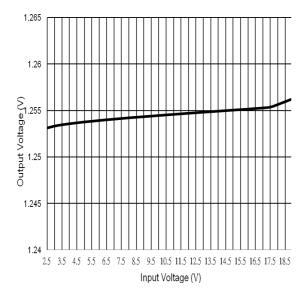


Figure 6. Output Voltage VS Input Voltage

Typical Characteristics (Contd.)

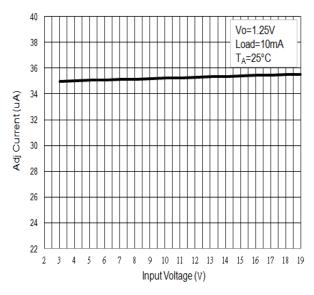


Figure 7. Adj Current VS Input Voltage

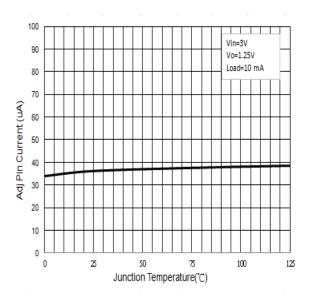


Figure 8. Adj Current VS Junction Tmperature

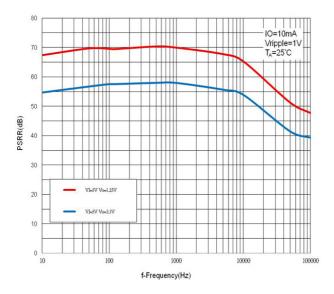
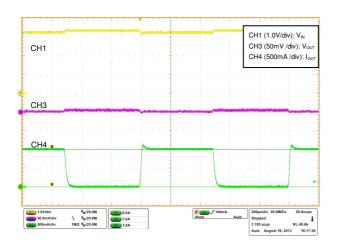
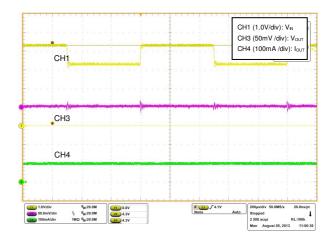



Figure 9. Power Supply Rejection Ratio

Typical Characteristics (Contd.)



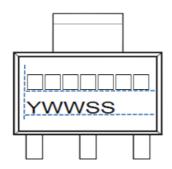
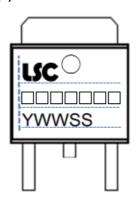
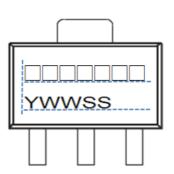

Figure 10. TA=25 °C, V_{IN} =3.3V, V_{OUT} =1.25V, I_{OUT} =5mA ~ 1A

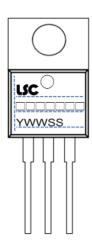
Figure 11. TA=25°C, V_{IN} =3.3~4.3V, V_{OUT} =1.25V, I_{OUT} =0.1A,


Marking Information

(1)SOT223-3L


- 2) YWWSS = Date Code & Internal Code Y = Year WW = Week SS = Internal Code

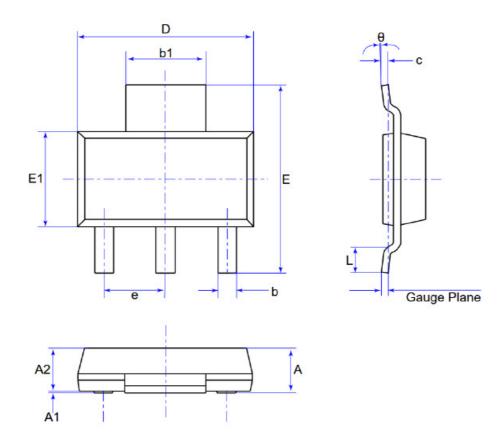
(3)TO252-2L


- 2) YWWSS = Date Code & Internal Code Y = Year WW = Week SS = Internal Code

(2)SOT89-3L

- 2) YWWSS = Date Code & Internal Code Y = Year WW = Week SS = Internal Code

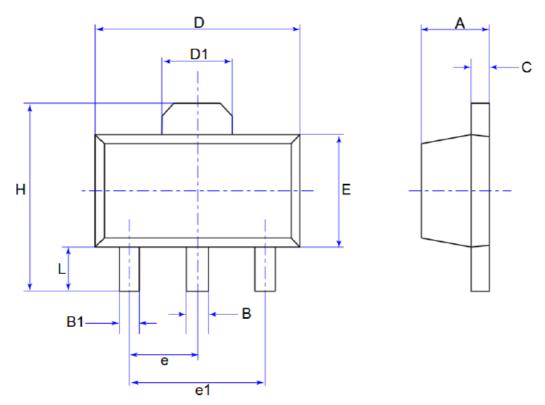
(4)TO220-3L



- 1) = Marking Name A1117Q1 = LA1117AAQBADJ
- 2) YWWSS = Date Code & Internal Code Y = Year WW = Week SS = Internal Code

Mechanical Information

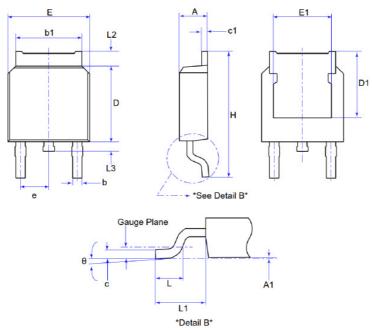
(1) Package type: SOT223-3L


Unit: mm

Symbol	Min	Max	
А	-	1.80	
A1	-	0.10	
A2	1.45	1.75	
b	0.66	0.84	
С	0.23	0.35	
D	6.20	6.70	
b1	3.00 REF		
Е	6.70	7.30	
E1	3.30	3.70	
е	2.30 BSC		
L	0.75	-	
θ	0°	10°	
Gauge Plane	0.30	REF	

Mechanical Information (Contd.)

(2) Package type: SOT89-3L


Unit: mm

Symbol	Min	Max	
А	1.40	1.60	
В	0.35	0.58	
B1	0.32	0.58	
С	0.35	0.46	
D	4.30	4.70	
D1	1.60 REF		
E	2.30	2.70	
е	1.50 TYP		
e1	3.00 TYP		
Н	3.94	4.70	
L	0.80	1.20	

Mechanical Information (Contd.)

(3) Package type: TO252-2L


Unit: mm

Symbol	Min	Max	
A	2.200	2.400	
A1	-	0.127	
b	0.660	0.860	
b1	5.334	REF	
С	0.460	0.600	
c1	0.460	0.580	
D	6.000	6.200	
D1	5.300	REF	
E	6.500	6.700	
E1	4.830 REF		
е	2.186	2.400	
Н	9.80	10.400	
L	1.400	1.700	
L1	2.900 REF		
Gauge plane	0.508REF		
L2	0.900	1.300	
L3	0.600	1.000	
θ	0°	8°	

Mechanical Information (Contd.)

(4) Package type: TO220-2L & 3L

Unit: mm

Symbol	Min	Max
A	4.400	4.670
A1	1.200	1.400
A2	2.230	2.720
b	0.700	0.910
b1	1.170	1.550
с	0.330	0.650
D	14.840	15.950
D1	8.600	9.750

Symbol	Min	Max	
E	9.850	10.260	
E1	6.858	8.890	
e	2.540 REF		
e1	5.080 REF		
H1	5.842	6.858	
L	12.700	13.760	
L1	-	3.710	
L2	-	1.778	
Q	2.650	2.950	

MSL (Moisture Sensitive Level) Information

IPC/JEDEC J-STD-020D.1 Moisture Sensitivity Levels Table

			SOAK REQUIREMENTS					
LEVEL	FLOOR LIFE				Accelerated Equivalent 1			
			Standard		eV 0.40-0.48	eV 0.30-0.39		
	TIME	CONDITION	TIME (hours)	CONDITION	TIME (hours)	TIME (hours)	CONDITION	
1	Unlimited	≤30 °C /85% RH	168 +5/-0	85 ℃ /85% RH	NA	NA	NA	
2	1 year	≤30 °C /60% RH	168 +5/-0	85 ℃ /60% RH	NA	NA	NA	
2a	4 weeks	≤30 °C /60% RH	696 ² +5/-0	30 ℃ /60% RH	120 -1/+0	168 -1/+0	60 ℃/ 60% RH	
3	168 hours	≤30 °C /60% RH	192 ² +5/-0	30 ℃ /60% RH	40 -1/+0	52 -1/+0	60 ℃/ 60% RH	
4	72 hours	≤30 °C /60% RH	96 ² +2/-0	30 ℃ /60% RH	20 +0.5/-0	24 +0.5/-0	60 ℃/ 60% RH	
5	48 hours	≤30 °C /60% RH	72 ² +2/-0	30 ℃ /60% RH	15 +0.5/-0	20 +0.5/-0	60 ℃/ 60% RH	
а	24 hours	≤30 °C /60% RH	48 ² +2/-0	30 ℃ /60% RH	10 +0.5/-0	13 +0.5/-0	60 ℃/ 60% RH	
6	Time on Label (TOL)	≤30 °C /60% RH	TOL	30 ℃ /60% RH	NA	NA	NA	

Note 1: CAUTION - To use the "accelerated equivalent" soak conditions, correlation of damage response (including electrical, after soak and reflow), should be established with the "standard" soak conditions. Alternatively, if the known activation energy for moisture diffusion of the package materials is in the range of 0.40 - 0.48 eV or 0.30 - 0.39 eV, the "accelerated equivalent" may be used. Accelerated soak times may vary due to material properties (e.g. mold compound, encapsulant, etc.). JEDEC document JESD22-A120 provides a method for determining the diffusion coefficient.

Note 2: The standard soak time includes a default value of 24 hours for semiconductor manufacturer's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility. If the actual MET is less than 24 hours the soak time may be reduced. For soak conditions of 30 °C/60% RH, the soak time is reduced by 1 hour for each hour the MET is less than 24 hours. For soak conditions of 60 °C/60% RH, the soak time is reduced by 1 hour for each 5 hours the MET is less than 24 hours. If the actual MET is greater than 24 hours the soak time must be increased. If soak conditions are 30 °C/60% RH, the soak time is increased 1 hour for each hour that the actual MET exceeds 24 hours. If soak conditions are 60 °C/60% RH, the soak time is increased 1 hour for each 5 hours that the actual MET exceeds 24 hours.

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.

LA1117 Rev. 07 18 of 18 2016/04/08