PI2DBS212

2.0GHz, Differential Broadband Signal Switch, 2-Differential Channel, 2:1 Mux/DeMux Switch

Features

- SAS, SATA2, XAUI Switch
- 2 Differential Channel, 2:1 Mux/DeMux
- Bandwidth of 2.0 GHz $(-3 \mathrm{~dB})$
- Low Bit-to-Bit Skew : <5 ps
- Low Crosstalk: -26dB @ 3.2 Gbps
- Low Off Isolation: -35dB @ 3.2 Gbps
- VDD Voltage: 1.2 V to 1.8 V
- ESD Tolerance: 8 kV HBM I/O, 2 kV HBM select pin
- Packaging (Pb-free \& Green):
- 20-Pin QSOP
- 28-Contact TQFN

Description

Pericom Semiconductor's PI2DBS212 is an 1:2 differential channel multiplexer/demultiplexer switch. Using a specialized design scheme, Pericom has been able to achieve a performance of 3 Gbps data rate mux/de-mux function. Due to its bi-directional nature, the PI2DBS212 can be used to allocate bandwidth to two different locations as a demux, or connect two high-speed sources to a single receiver as a mux.

The PI2DBS212 will target the following standards: SAS, SATA I, SATA II, XAUI, INFINIBAND, HYPERTRANSPORT, and RAP ID I/O, for application in computers, consumer electronics, instrumentation, etc.

Block Diagram

Truth Table

Function	SEL
Port A to Port B	L
Port A to Port C	H

Pin Description - 20-Pin QSOP

Pin Description - 28-Contact TQFN

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

```
Storage Temperature
``` \(\qquad\)
``` \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Supply Voltage to Ground Potential............... -0.5 V to +2.5 V
DC Input Voltage
``` \(\qquad\)
```

DC Output Current.

``` \(\qquad\)
```

Power Dissipation.

``` \(\qquad\)
``` .0 .5 W
```


Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics over 1.8V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed HIGH level	$0.65 \times \mathrm{V}_{\text {DD }}$			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed LOW level	-0.5		$0.35 \times \mathrm{V}_{\mathrm{DD}}$	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\text {DD }}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.7	-1.2	
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 5	
R_{ON}	ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min., } \mathrm{V}_{\mathrm{IN}}=1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}= \\ & 40 \mathrm{~mA} \end{aligned}$			10	Ohm
CON	Capacitance ON (A/B)	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}$		3.5		pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Power Supply Characteristics over 1.8 V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 10 \%$)

Parameters	Description	Test Conditions $^{(\mathbf{1)}}$	Min.	Typ. ${ }^{(\mathbf{2})}$	Max.	Units
	I	$\mathrm{V}_{\mathrm{DD}}=2.0, \mathrm{~V}_{\mathrm{IN}}$ and $\mathrm{V}_{\mathrm{SEL}}=\mathrm{GND}$ or				
I_{DD}	Quiescent Power Supply Current		300	400	$\mu \mathrm{~A}$	

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics over 1.8V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 10 \%$)

Parameter	Description ${ }^{(1)}$	Min.	Typ.	Max.	Units
tPZH, tPZL	Line Enable Time - SEL to $\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}$	0.5		8.0	ns
tPHZ, tPLZ	Line Disable Time - SEL to $\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}$	0.5		4.0	
$\mathrm{t}_{\mathrm{b}-\mathrm{b}}$	Bit-to-bit skew, within same differential pair			5	ps
$\mathrm{t}_{\text {ch-ch }}$	Channel-to-channel timing skew			12	
$\mathrm{t}_{\text {PD }}$	Propagation Delay, A to B or C / B or C to A	50		150	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

DC Electrical Characteristics over 1.5V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

Parameter	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed HIGH level	$0.65 \times \mathrm{V}_{\mathrm{DD}}$			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed LOW level	-0.5		0.35 x V DD	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.7	-1.2	
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$			± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 5	
R_{ON}	ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min., } \mathrm{V}_{\mathrm{IN}}=1.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}= \\ & 40 \mathrm{~mA} \end{aligned}$			25	Ohm
$\mathrm{CON}^{\text {O}}$	Capacitance ON (A/B)	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V}$		3.5		pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Power Supply Characteristics over 1.5V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
IDD	Quiescent Power Supply Current	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \text { and } \mathrm{V}_{\mathrm{SEL}}=\mathrm{GND} \text { or } \\ \mathrm{V}_{\mathrm{DD}} \end{array} \\ & \hline \end{aligned}$			3.0	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics over 1.5V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

Parameter	Description ${ }^{(1)}$	Min.	Typ.	Max.	Units
tPZH, tPZL	Line Enable Time - SEL to A_{N}, B_{N}	0.5		8.0	ns
tPHZ, tPLZ	Line Disable Time - SEL to $\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}$	0.5		8.0	
$\mathrm{t}_{\mathrm{b}-\mathrm{b}}$	Bit-to-bit skew, within same differential pair			5	ps
$\mathrm{t}_{\text {ch-ch }}$	Channel-to-channel timing skew			12	
tpD	Propagation Delay, A to B or C / B or C to A	50		150	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

DC Electrical Characteristics over 1.2V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V} \pm 0.05 \mathrm{~V}$)

Parameter	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
V_{IH}	Input HIGH Voltage	Guaranteed HIGH level	$0.65 \times \mathrm{V}_{\text {DD }}$			V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed LOW level	-0.5		$0.35 \times \mathrm{V}_{\mathrm{DD}}$	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$			± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND			± 5	
R_{ON}	ON Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Min., } \mathrm{V}_{\mathrm{IN}}=1.1 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}= \\ & 40 \mathrm{~mA} \end{aligned}$			26	Ohm
$\mathrm{CON}^{\text {O }}$	Capacitance ON (A/B)	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{DD}}=1.2 \mathrm{~V}$		3.5		pF

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Power Supply Characteristics over 1.2V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V} \pm 0.05 \mathrm{~V}$)

Parameters	Description	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Units
IDD	Quiescent Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \text { and } \mathrm{V}_{\mathrm{SEL}}=\mathrm{GND} \text { or } \\ & \mathrm{V}_{\mathrm{DD}} \end{aligned}$			1.6	mA

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics over 1.2V Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V} \pm 0.05 \mathrm{~V}$)

Parameter	Description ${ }^{(1)}$	Min.	Typ.	Max.	Units
tPZH, $^{\text {t }}$ PZL	Line Enable Time - SEL to A_{N}, B_{N}	0.5		10.0	ns
$\mathrm{t}_{\text {PHZ }} \mathrm{t}_{\text {PLZ }}$	Line Disable Time - SEL to $\mathrm{A}_{\mathrm{N}}, \mathrm{B}_{\mathrm{N}}$	0.5		10.0	
$\mathrm{t}_{\mathrm{b}-\mathrm{b}}$	Bit-to-bit skew, within same differential pair			5	ps
$\mathrm{t}_{\text {ch-ch }}$	Channel-to-channel timing skew			12	
$t_{\text {PD }}$	Propagation Delay, A to B or C / B or C to A	50		150	

Notes:

1. For max. or min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

Differential Crosstalk (at $\mathrm{V}_{\mathrm{DD}}=\mathbf{1 . 8 V}$)

Bandwidth (at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$)

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions	Min.	Typ. $^{(\mathbf{1})}$	Max.	Units
X $_{\text {TALK }}$	Crosstalk	See Fig. 1 for Measurement Setup, f=1.65				
GHz						

Notes:

1. Guaranteed by design. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient, and maximum loading.

PI2DBS212

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

Parameter	Description	Test Conditions	Min.	Typ. $^{(\mathbf{1)}}$	Max.	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk	See Fig. 1 for Measurement Setup, $\mathrm{f}=$ 1.65 GHz		-26		
$\mathrm{O}_{\text {IRR }}$	OFF Isolation	See Fig. 2 for Measurement Setup, $\mathrm{f}=$ 1.65 GHz	dB			
$\mathrm{I}_{\text {LOSS }}$	Differential Insertion Loss	$\mathrm{f}=1.65 \mathrm{GHz}$	-35			
BW	Bandwidth	$@,-3 \mathrm{~dB}$		-2.5		

Notes:

1. Guaranteed by design. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient, and maximum loading.

Dynamic Electrical Characteristics Over the Operating Range ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V} \pm 0.05 \mathrm{~V}$)

Parameter	Description	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Units
$\mathrm{X}_{\text {TALK }}$	Crosstalk	See Fig. 1 for Measurement Setup, $\mathrm{f}=$				
1.65 GHz						

Notes:

1. Guaranteed by design. Typical values are at $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient, and maximum loading.

Differential Crosstalk (at $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$)

PI2DBS212
2.0GHz, Differential Broadband Signal Switch, 2-Differential Channel, 2:1 Mux/DeMux Switch

Off Isolation (at $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$)

Bandwidth (at $\mathrm{V}_{\mathrm{DD}}=1.2 \mathrm{~V}$)

Test Circuit for Electrical Characteristics ${ }^{(1-5)}$

Switch Positions

Test	Switch
tplZ, $_{\text {PZL }}$	$2 \times \mathrm{V}_{\text {DD }}$
t $_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND
Prop Delay	Open

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control. output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
4. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
5. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

\square
Voltage Waveforms Enable and Disable Times

Diff. Insertion Loss and Return Test Circuit

Packaging Mechanical: 20-Pin QSOP (Q)

Packaging Mechanical: 28-Contact TQFN (ZH)

Ordering Information

Ordering Code	Package Code	Package Description
PI2DBS212QE	Q	Pb-free \& Green, 20-pin QSOP
PI2DBS212ZHE	ZH	Pb-free \& Green, 28-contact TQFN

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free \& Green
- Adding an X suffix = Tape/Reel

