

AZ70XX

General Description

The AZ70XX series ICs are under voltage detectors with a built in voltage threshold and low power consumption. The AZ70XX are specifically designed to accurately monitor power supplies.

The AZ70XX use a precision on-chip voltage reference and a comparator to measure the input operating voltage. These ICs can accurately reset the system after detecting voltage at the time of switching power on and instantaneous power off in various CPU systems and other logic systems. The detect voltage thresholds are 2.3V/2.5V/2.7V/2.9V/3.1V/3.3V/4.2V/4.5Vfor AZ7023/25/27/29/31/33/42/45 respectively. Built in hysteresis helps to prevent erratic operation in the presence of noise.

The AZ70XX series are available in 2 standard packages: TO-92 (bulk or ammo packing) and SOT-89-3.

Features

Low Current Consumption: I_{CCL} =300 μA Typical

 I_{CCH} =30 μ A Typical

Low Minimum Operating Voltage for Output

Resetting: 0.8V Typical

Built in Hysteresis Voltage: 50mV Typical

Open Collector Output

Extended Temperature Range: -40 to 85°C

Applications

Low Battery Voltage Detector Power Fail Indicator Processor Reset Generator Battery Backup Control Home Electric Appliances

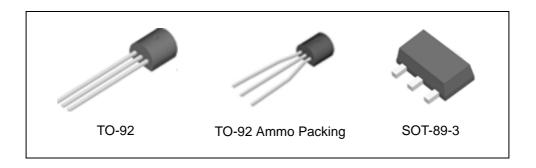


Figure 1. Package Types of AZ70XX

AZ70XX

Pin Configuration

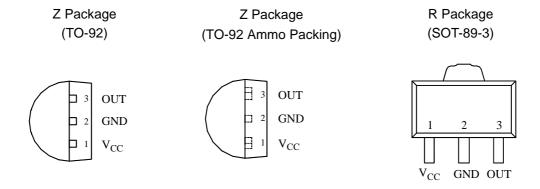


Figure 2. Pin Configuration of AZ70XX (Top View)

Functional Block Diagram

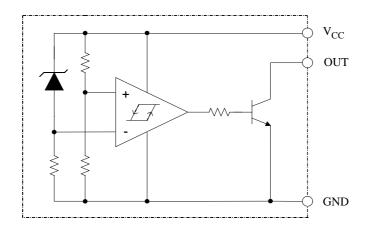
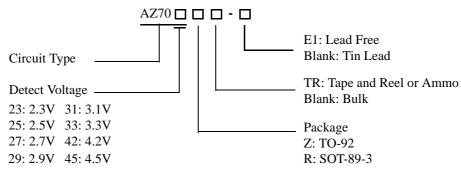



Figure 3. Functional Block Diagram of AZ70XX

AZ70XX

Ordering Information

Package	Temperature Range	Detect Voltage	Part Number		Mark	Packing Type		
			Tin Lead	Lead Free	Tin Lead	Lead Free	- Facking Type	
	-40 to 85°C	2.3V	AZ7023Z	AZ7023Z-E1	AZ7023Z	AZ7023Z-E1	Bulk	
			AZ7023ZTR	AZ7023ZTR-E1	AZ7023Z	AZ7023Z-E1	Ammo	
		2.5V	AZ7025Z	AZ7025Z-E1	AZ7025Z	AZ7025Z-E1	Bulk	
			AZ7025ZTR	AZ7025ZTR-E1	AZ7025Z	AZ7025Z-E1	Ammo	
		2.7V	AZ7027Z	AZ7027Z-E1	AZ7027Z	AZ7027Z-E1	Bulk	
TO-92			AZ7027ZTR	AZ7027ZTR-E1	AZ7027Z	AZ7027Z-E1	Ammo	
		2.9V	AZ7029Z	AZ7029Z-E1	AZ7029Z	AZ7029Z-E1	Bulk	
			AZ7029ZTR	AZ7029ZTR-E1	AZ7029Z	AZ7029Z-E1	Ammo	
		3.1V	AZ7031Z	AZ7031Z-E1	AZ7031Z	AZ7031Z-E1	Bulk	
			AZ7031ZTR	AZ7031ZTR-E1	AZ7031Z	AZ7031Z-E1	Ammo	
		3.3V	AZ7033Z	AZ7033Z-E1	AZ7033Z	AZ7033Z-E1	Bulk	
			AZ7033ZTR	AZ7033ZTR-E1	AZ7033Z	AZ7033Z-E1	Ammo	
		4.2V	AZ7042Z	AZ7042Z-E1	AZ7042Z	AZ7042Z-E1	Bulk	
			AZ7042ZTR	AZ7042ZTR-E1	AZ7042Z	AZ7042Z-E1	Ammo	
		4.5V	AZ7045Z	AZ7045Z-E1	AZ7045Z	AZ7045Z-E1	Bulk	
			AZ7045ZTR	AZ7045ZTR-E1	AZ7045Z	AZ7045Z-E1	Ammo	
SOT-89-3	-40 to 85°C	2.3V	AZ7023RTR	AZ7023RTR-E1	7023R	E723	Tape & Reel	
		2.5V	AZ7025RTR	AZ7025RTR-E1	7025R	E725	Tape & Reel	
		2.7V	AZ7027RTR	AZ7027RTR-E1	7027R	E727	Tape & Reel	
		2.9V	AZ7029RTR	AZ7029RTR-E1	7029R	E729	Tape & Reel	
		3.1V	AZ7031RTR	AZ7031RTR-E1	7031R	E731	Tape & Reel	
		3.3V	AZ7033RTR	AZ7033RTR-E1	7033R	E733	Tape & Reel	
		4.2V	AZ7042RTR	AZ7042RTR-E1	7042R	E742	Tape & Reel	
		4.5V	AZ7045RTR	AZ7045RTR-E1	7045R	E745	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Mar. 2007 Rev. 1. 5

AZ70XX

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Supply Voltage	V_{CC}	-0.3 to 20	V	
Power Dissipation (Package Limitations,	P_{D}	TO-92 Package: 400	mW	
$T_A=25^{\circ}C$	1 D	SOT-89-3 Package: 500	111 **	
Operating Junction Temperature	T_{J}	150	°C	
Storage Temperature Range	T _{STG}	-65 to 150	°C	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit	
Supply Voltage	V _{CC}		18	V	
Operating Temperature Range	T _A	-40	85	°C	

AZ70XX

Electrical Characteristics

 T_A =25°C, unless otherwise specified.

Parameter	Symbol	Conditions		Min	Тур	Max	Unit	
	$V_{ m DET}$	R_L =200 Ω (Note 2) $V_{OL} \le 0.4V$	AZ7023R/Z	2.15	2.3	2.45	V	
			AZ7025R/Z	2.35	2.5	2.65		
			AZ7027R/Z	2.55	2.7	2.85		
Detect Voltage			AZ7029R/Z	2.75	2.9	3.05		
Detect voltage			AZ7031R/Z	2.95	3.1	3.25		
			AZ7033R/Z	3.15	3.3	3.45		
			AZ7042R/Z	4.05	4.2	4.35		
			AZ7045R/Z	4.35	4.5	4.65		
Low-level Output Voltage	V _{OL}	$V_{CC}=V_{DET}(min)$ -0.05V R_L =200 Ω (Note 2)				0.4	V	
Output Leakage Current	I _{OH}	V _{CC} =15V				0.1	μΑ	
Hysteresis Voltage	V _{HYS}	R _L =200Ω (Note 2)		30	50	100	mV	
Detect Voltage Temperature Coefficient				±0.01		% /°C		
Circuit Current at On Time	I _{CCL}	V _{CC} =V _{DET} (min)-0.05V			300	500	μΑ	
Circuit Current at Off Time	I_{CCH}	V _{CC} =5.25V			30	50	μΑ	
Minimum Operating Voltage	V _{OPR}	R_L =200 Ω (Note 2) $V_{OL} \le 0.4V$			0.8		V	
"L" Transmission Delay Time	tpHL	V_{CC} changed from 5.25V to V_{DET} (min)-0.05V, R_L =1.0K Ω , C_L =100 p (Note 3)			10		μs	
"H" Transmission Delay Time	tpLH	$\begin{aligned} &V_{CC} \text{ changed from } V_{DET}(\text{min}) - \\ &0.05 V \text{ to } 5.25 V, R_L = 1.0 K \Omega, \\ &C_L = 100 p \text{ (Note 3)} \end{aligned}$			15		μs	
Output Current at On Time	I _{OL} I	$V_{CC}=V_{DET}(min)$ -0.05V $T_{A}=25^{\circ}C \text{ (Note 4)}$ $V_{CC}=V_{DET}(min)$ -0.05V $T_{A}=-40 \text{ to } 85 ^{\circ}C \text{ (Note 4)}$		20			. mA	
Suspen Current at On Time	I _{OL}]]			16				

Note 2: See test circuit 1 and Figure 12.

Mar. 2007 Rev. 1. 5

Note 3: See test circuit 2 and Figure 12.

Note 4: See test circuit 3. Adjusting the regulative power source until the reading value of voltage meter V is 0.4V, the reading value of current meter A is defined as "Output Current at On Time".

AZ70XX

Electrical Characteristics (Continued)

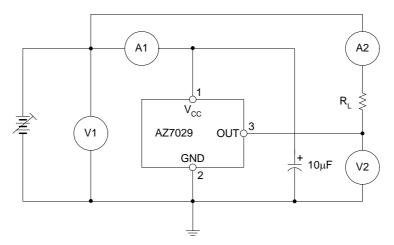


Figure 4. Test Circuit 1

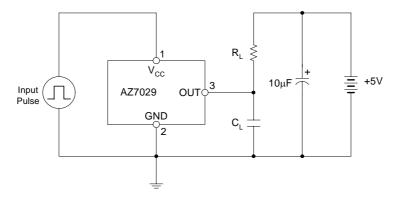
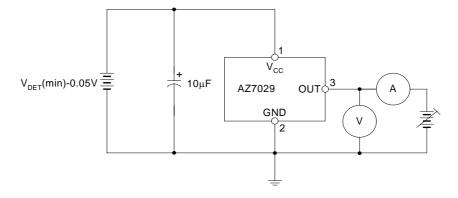
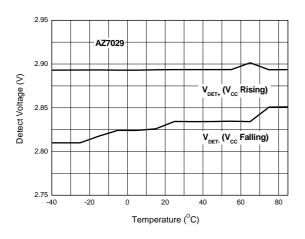


Figure 5. Test Circuit 2




Figure 6. Test Circuit 3

Mar. 2007 Rev. 1. 5

AZ70XX

Typical Performance Characteristics

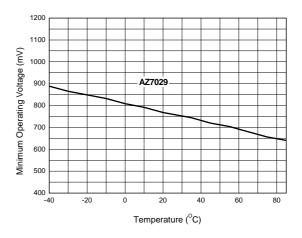
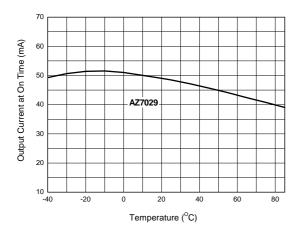



Figure 7. Detect Voltage vs. Temperature

Figure 8. Minimum Operating Voltage vs. Temperature

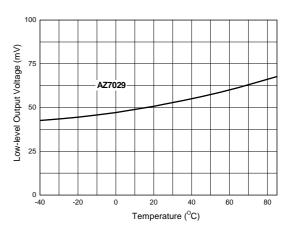


Figure 9. Output Current at On Time vs. Temperature

Figure 10. Low-level Output Voltage vs. Temperature

Mar. 2007 Rev. 1. 5

AZ70XX

Typical Performance Characteristics (Continued)

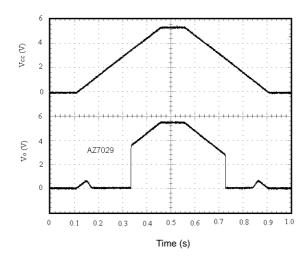


Figure 11. Output Voltage Dynamic Response when V_{CC} Increases and Decreases

Operating Diagram

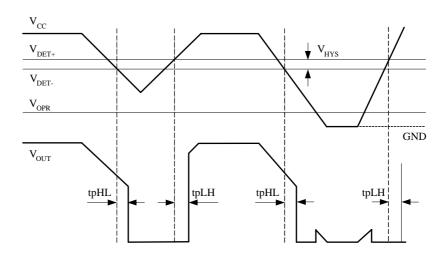


Figure 12. AZ70XX Timing Waveform (Note 5)

Note 5: Detect voltage: V_{DET} Hysteresis voltage (V_{HYS}): V_{DET} - V_{DET} -

Release voltage: V_{DET+}

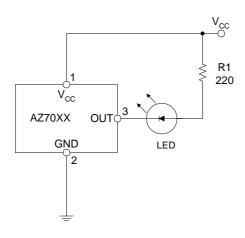
Minimum operating voltage: V_{OPR}

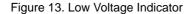
Mar. 2007 Rev. 1. 5

AZ70XX

Operating Diagram (Continued)

Figure 12 is a typical timing waveform for AZ70XX. In normal steady-state operation when $V_{CC} > V_{DET}$, the output will be in a logic high state and V_{OUT} is dependent upon the voltage that the pull-up resistor connected to.

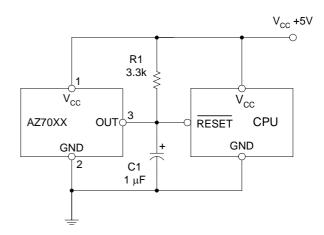

Here is some explanations for AZ70XX's operation.

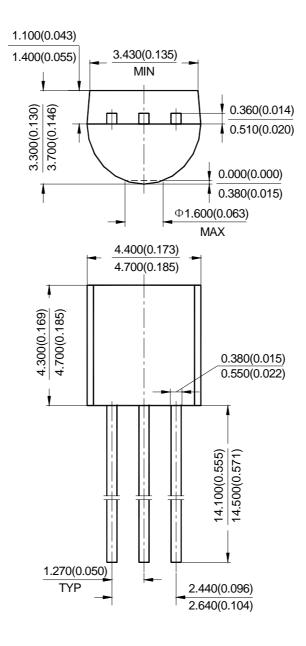

- 1. When the input voltage V_{CC} falls below V_{DET} , the output will pull down to logic low after a delay time of tpHL. In general, at rated output current and V_{CC} , V_{OUT} can be pulled down to a voltage as low as within 0.4V from GND. (See the Electrical Characteristics section). The voltage level V_{DET} means the detect voltage.
- 2. The output, V_{OUT} , will stay valid until V_{CC} falls below the minimum operating voltage, V_{OPR} (0.8V

typical). Below minimum operating voltage, the output is undefined.

- 3. During power-up, V_{OUT} will remain undefined until V_{CC} rises above V_{OPR} , at which time the output will become valid. V_{OUT} will be in its active low state while $V_{OPR} < V_{CC} < V_{DET+}$ ($V_{DET+} = V_{DET-} + V_{HYS}$). V_{DET+} is the release voltage. V_{HYS} means the hysteresis voltage and is the difference voltage between the V_{DET+} and V_{DET-} .
- **4.** When V_{CC} rises above V_{DET+} , the output will be in its inactive state. After a delay time of tpLH, V_{OUT} will be in its logic high state .

Typical Applications

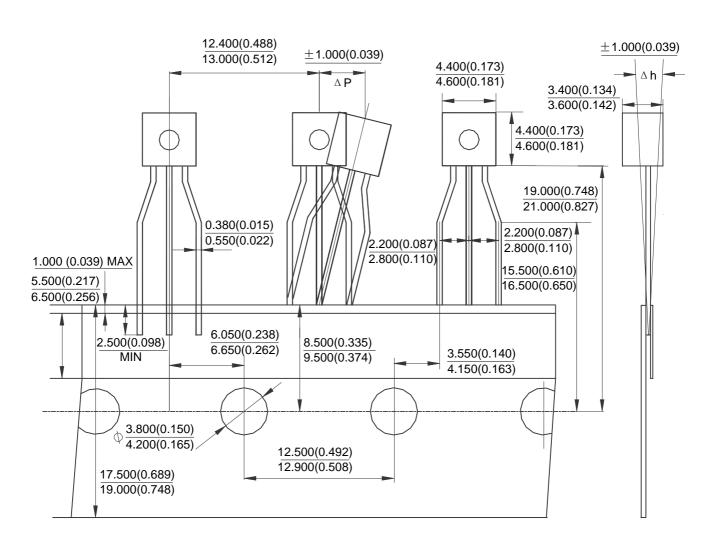


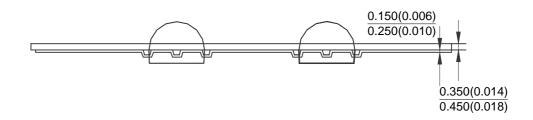

Figure 14. CPU Resetting Circuit

AZ70XX

Mechanical Dimensions

TO-92 Unit: mm(inch)

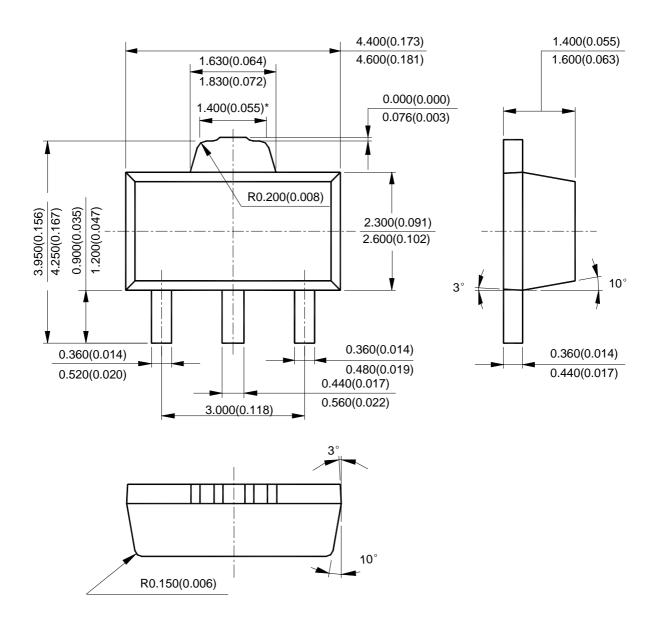



AZ70XX

Unit: mm(inch)

Mechanical Dimensions (Continued)

TO-92 Ammo Packing


Mar. 2007 Rev. 1. 5

AZ70XX

Mechanical Dimensions (Continued)

SOT-89-3 Unit: mm(inch)

Mar. 2007 Rev. 1. 5

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited - Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Limited

800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen 518026, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

BCD Semiconductor Manufacturing Limited

- IC Design Group Advanced Analog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corporation 30920 Huntwood Ave. Hayward, CA 94544, U.S.A Tel: +1-510-324-2988 Fax: +1-510-324-2788