

3A LOW DROPOUT LINEAR REGULATORR

Description

The AZ1085C is a series of low dropout positive voltage regulators with a maximum dropout of 1.5V at 3A of load current.

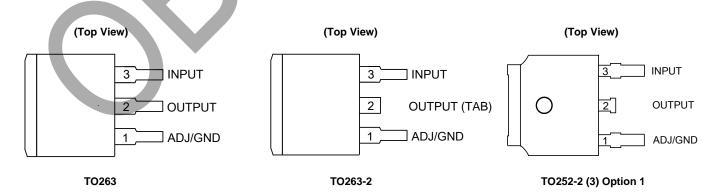
The series features on-chip thermal shutdown. It also includes a bandgap reference and a current limiting circuit.

The AZ1085C is available in 1.5V, 1.8V, 2.5V, 3.3V, 5.0V and adjustable versions. The fixed versions integrate the adjust resistors. The adjustable version can set the output voltage with two external resistors.

The AZ1085C series is available in standard packages of TO263, TO263-2, TO252-2 (3), TO252-2 (4) and TO252-2 (5).

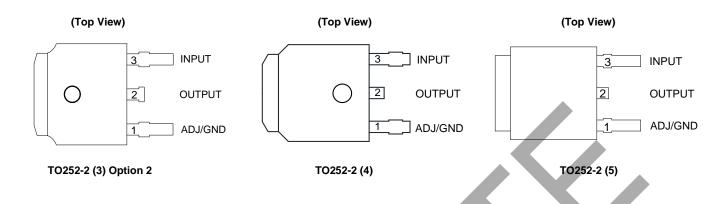
Applications

- High Efficiency Linear Regulators
- Battery Charger
- Post Regulation for Switching Supplies
- Microprocessor Supply
- Mother Board Power Supplies
- DVD-Video Player
- Telecom Equipment
- Set Top Boxes and Web Boxes Modules' Supply

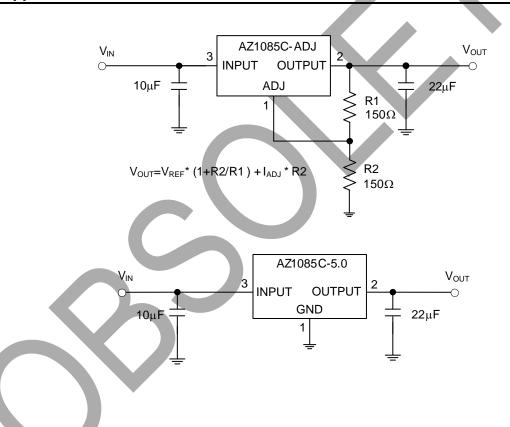

Features

- Low Dropout Voltage: Typical 1.3V at 3A
- Current Limiting and Thermal Protection
- Output Current: 3A
- Current Limit: 4.5A
- Operating Junction Temperature: 0 to +125°C
- Compatible with Low ESR Ceramic Capacitor
- Line Regulation: 0.015% (Typ)
- Load Regulation: 0.1% (Typ)
- Lead-Free Packages: TO263, TO263-2
 - Totally Lead-Free; RoHS Compliant (Notes 1 & 2)
- Lead-Free Packages, Available in "Green" Molding Compound: TO263, TO263-2, TO252-2 (3), TO252-2 (4), TO252-2 (5)
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)

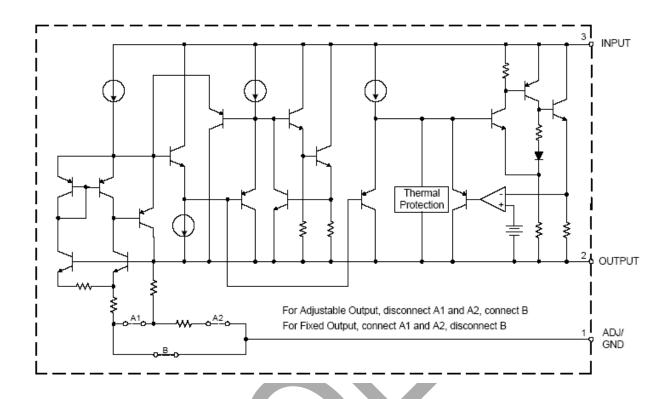
Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.


- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Assignments



Pin Assignments (Cont.)



Typical Applications Circuit

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating		Unit
V_{IN}	Input Voltage 13.2		V	
TJ	Operating Junction Temperature	+150		°C
T _{STG}	Storage Temperature Range	-65 to +150		°C
T _{LEAD}	Lead Temperature (Soldering, 10sec.)	+260		°C
		TO263	75	
θЈА	Thermal Resistance (Note 5)	TO263-2	75	°C/W
		TO252-2 (3)/TO252-2 (4)/ TO252-2 (5)		
ESD				V

Notes:

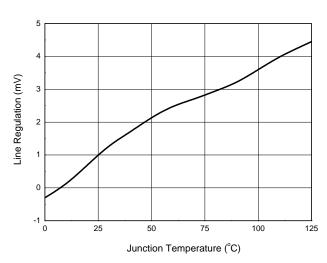
- 4. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
- 5. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_{A} . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D(max)} = (T_{J(max)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.

Recommended Operating Conditions

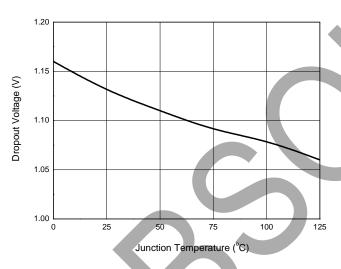
Symbol	Parameter	Min	Max	Unit
V _{IN}	Input Voltage	_	12	٧
TJ	Operating Junction Temperature Range	0	+125	°C

Electrical Characteristics (Typicals and limits appearing in normal type apply for $T_J = +25$ °C. Limits appearing in **Boldface** type apply over the entire operating junction temperature range 0 to +125°C.)

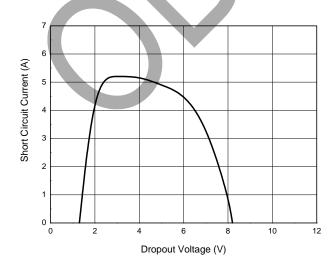
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REF}	Reference Voltage	AZ1085C-ADJ, $I_{OUT} = 10$ mA, V_{IN} - $V_{OUT} = 3$ V, $T_{J} = +25$ °C, 10 mA $\leq I_{OUT} \leq 3$ A, 1.5 V $\leq V_{IN}$ - $V_{OUT} \leq 5$ V	1.238 1.225	1.250 1.250	1.262 1.275	V
		AZ1085C-1.5, $I_{OUT} = 0mA$, $V_{IN} = 4.5V$, $T_{J} = +25^{\circ}C$, $10mA \le I_{OUT} \le 3A$, $3.0V \le V_{IN} \le 6V$	1.485 1.47	1.5 1.5	1.515 1.53	V
		AZ1085C-1.8, $I_{OUT} = 0$ mA, $V_{IN} = 4.8$ V, $T_{J} = +25$ °C, 10 mA $\leq I_{OUT} \leq 3$ A, 3.3 V $\leq V_{IN} \leq 7$ V	1.782 1.764	1.8 1.8	1.818 1.836	V
Vouт	Output Voltage	AZ1085C-2.5, $I_{OUT} = 0$ mA, $V_{IN} = 5.5$ V, $T_{J} = +25$ °C, 10 mA $\leq I_{OUT} \leq 3$ A, 4.0 V $\leq V_{IN} \leq 7$ V	2.475 2.45	2.5 2.5	2.525 2.55	V
		AZ1085C-3.3, $I_{OUT} = 0$ mA, $V_{IN} = 6.3$ V, $T_{J} = +25$ °C, 10 mA $\leq I_{OUT} \leq 3$ A, 4.8 V $\leq V_{IN} \leq 8$ V	3.267 3.234	3.3 3.3	3.333 3.366	V
		AZ1085C-5.0, $I_{OUT} = 0mA$, $V_{IN} = 8V$, $T_{J} = +25$ °C, $10mA \le I_{OUT} \le 3A$, $6.5V \le V_{IN} \le 10V$	4.95 4.9	5 5	5.05 5.1	V
		AZ1085C-ADJ, $I_{OUT} = 10mA, 2.85V \le V_{IN} \le 10V$	_	0.015 0.035	0.2 0.2	%
	Line Regulation	AZ1085C-1.5, I _{OUT} = 10mA, 3.0V ≤ V _{IN} ≤ 10V		0.5 1	6 6	mV
ΔV _{OUT}		AZ1085C-1.8, $I_{OUT} = 10$ mA, 3.3V $\leq V_{IN} \leq 10$ V		0.5 1	6 6	mV
		AZ1085C-2.5, I _{OUT} = 10mA, 4.0V ≤ V _{IN} ≤ 10V	_	0.5 1	6 6	mV
		AZ1085C-3.3, I _{OUT} = 10mA, 4.8V ≤ V _{IN} ≤ 10V	_	0.5 1	6 6	mV
		AZ1085C-5.0, $I_{OUT} = 10$ mA, 6.5 V \leq $V_{IN} \leq$ 10V	_	0.5 1	10 10	mV

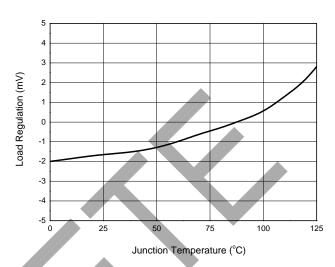

Electrical Characteristics (Cont. Typicals and limits appearing in normal type apply for $T_J = +25$ °C. Limits appearing in **Boldface** type apply over the entire operating junction temperature range 0 to +125°C.)

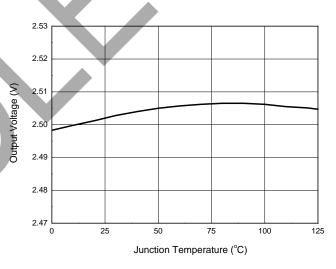
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		AZ1085C-ADJ,	_	0.1	0.3	%
		$0mA \le I_{OUT} \le 3A$, $V_{IN}-V_{OUT} = 3V$		0.2	0.4	
		AZ1085C-1.5,	_	3	15	mV
		$0mA \le I_{OUT} \le 3A$, $V_{IN}-V_{OUT} = 3V$		7	20	
		AZ1085C-1.8,		3	15	mV
ΔVουτ	Load Regulation	$0mA \le I_{OUT} \le 3A$, $V_{IN}-V_{OUT} = 3V$		7	20	
30.	3	AZ1085C-2.5,		3	15	mV
		$0mA \le I_{OUT} \le 3A$, $V_{IN}-V_{OUT} = 3V$		7	20	
		AZ1085C-3.3,	_	3	15	mV
		$0mA \le I_{OUT} \le 3A$, $V_{IN}-V_{OUT} = 3V$		7	20	
		AZ1085C-5.0,		5	20	mV
		$0mA \le I_{OUT} \le 3A$, $V_{IN}-V_{OUT} = 3V$		10	35	
V _{DROP}	Dropout Voltage	$I_{OUT} = 3A$, ΔV_{REF} , $\Delta V_{OUT} = 1\%$	_	1.3	1.5	V
		TO263	-	6.34	1	
θјс	Thermal Resistance (Junction to Case)	TO263-2		6.34	1	°C/W
	(0000000000000)	TO252-2 (3)/TO252-2 (4)/TO252-2 (5)	_	7.36	_	
I _{LIMIT}	Current Limit	imit V _{IN} -V _{OUT} = 3V		4.5	1	Α
I _{LOAD} (MIN)	Minimum Load Current	V _{IN} = 10V (AZ1085C-ADJ)	ı	3	10	mA
IQ	Quiescent Current	V _{IN} = 10V (AZ1085C)	ı	5	10	mA
PSRR	Ripple Rejection	f_{RIPPLE} = 120Hz, C_{OUT} = 25 μ F, I_{OUT} = 3A, V_{IN} - V_{OUT} = 3V	60	72	1	dB
I _{ADJ}	Adjust Pin Current	V _{IN} = 4.25V, I _{OUT} = 10mA	ı	55	120	μΑ
ΔI_{ADJ}	Adjust Pin Current Change	10mA ≤ I _{OUT} ≤ 3A, 1.5V ≤ V _{IN} -V _{OUT} ≤ 6V	_	0.2	5	μΑ
_	Long Term Stability	T _A = +125°C, 1000Hrs	_	0.5	_	%
-	Temperature Stability	I _{OUT} = 10mA, V _{IN} -V _{OUT} = 1.5V	_	0.5	_	%
-	RMS Noise (% of V _{OUT})	T _A = +25°C, 10Hz ≤ f ≤ 10kHz	-	0.003	-	%

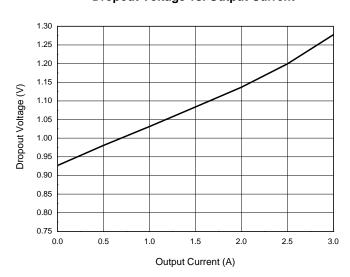


Performance Characteristics

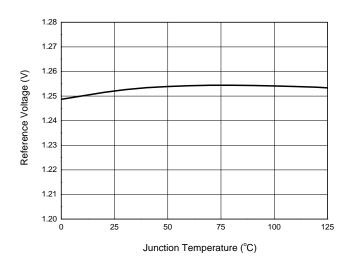

Line Regulation vs. Junction Temperature

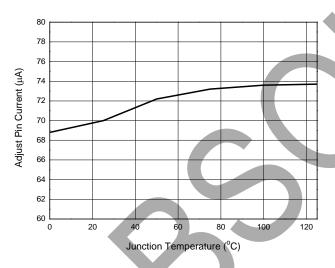

Dropout Voltage vs. Junction Temperature


Short Circuit Current vs. Dropout Voltage

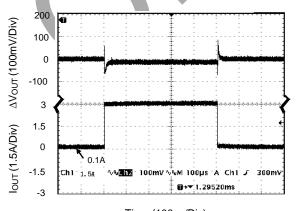

Load Regulation vs. Junction Temperature

Output Voltage vs. Junction Temperature

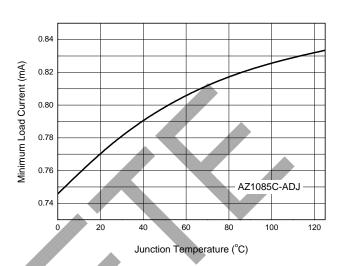

Dropout Voltage vs. Output Current



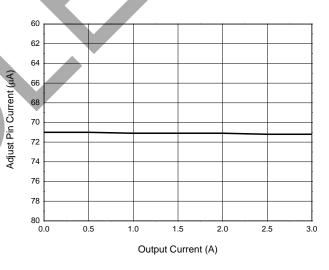
Performance Characteristics (Cont.)


Reference Voltage vs. Junction Temperature

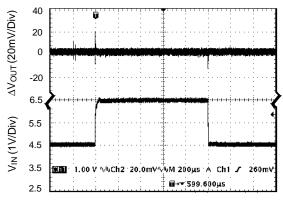
Adjust Pin Current vs. Junction Temperature



Load Transient Response (Conditions: $V_{IN} = 5.5V$, $V_{OUT} = 2.5V$, $I_{OUT} = 100$ mA to 3A, $C_{IN} = C_{OUT} = 10$ µF)

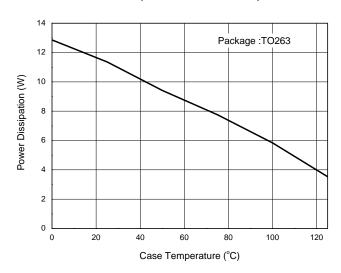


Time (100µs/Div)

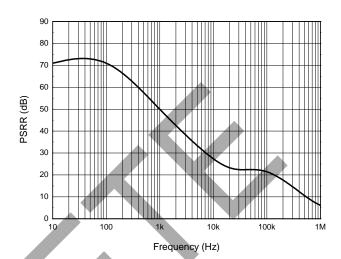

Minimum Load Current vs. Junction Temperature

Adjust Pin Current vs. Output Current

Line Transient Response (Conditions: V_{IN} = 4.5V to 6.5V, V_{OUT} = 2.5V, I_{OUT} = 200mA, C_{IN} = 1 μ F, C_{OUT} = 10 μ F)

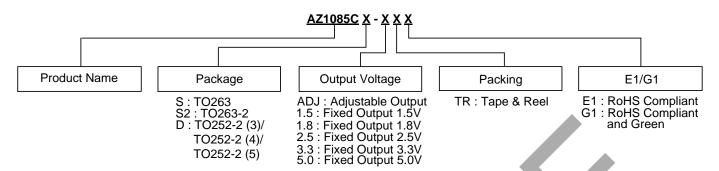


Time (200µs/Div)



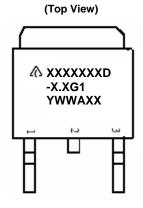
Performance Characteristics (Cont.)

Power Dissipation vs. Case Temperature



PSRR vs. Frequency

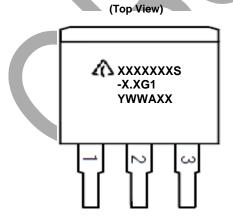
Ordering Information



		Temperature	Part Nu		Markii		
	Package	Range	RoHS Compliant	RoHS Compliant and Green	RoHS Compliant	RoHS Compliant and Green	Packing
	TO263	0 to +125°C	AZ1085CS- ADJTRE1	AZ1085CS- ADJTRG1	AZ1085CS- ADJE1	AZ1085CS- ADJG1	800/Tape & Reel
	TO263	0 to +125°C	AZ1085CS- 1.5TRE1	AZ1085CS- 1.5TRG1	AZ1085CS- 1.5E1	AZ1085CS- 1.5G1	800/Tape & Reel
Lead-Free	TO263	0 to +125°C	AZ1085CS- 1.8TRE1	AZ1085CS- 1.8TRG1	AZ1085CS- 1.8E1	AZ1085CS- 1.8G1	800/Tape & Reel
Pb Lead-free Green	TO263	0 to +125°C	AZ1085CS- 2.5TRE1	AZ1085CS- 2.5TRG1	AZ1085CS- 2.5E1	AZ1085CS- 2.5G1	800/Tape & Reel
	TO263	0 to +125°C	AZ1085CS- 3.3TRE1	AZ1085CS- 3.3TRG1	AZ1085CS- 3.3E1	AZ1085CS- 3.3G1	800/Tape & Reel
	TO263	0 to +125°C	AZ1085CS- 5.0TRE1	AZ1085CS- 5.0TRG1	AZ1085CS- 5.0E1	AZ1085CS- 5.0G1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1085CS2- ADJTRE1	AZ1085CS2- ADJTRG1	AZ1085CS2- ADJE1	AZ1085CS2- ADJG1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1085CS2- 1.5TRE1	AZ1085CS2- 1.5TRG1	AZ1085CS2- 1.5E1	AZ1085CS2- 1.5G1	800/Tape & Reel
Lead-Free	TO263-2	0 to +125°C	AZ1085C\$2- 1.8TRE1	AZ1085CS2- 1.8TRG1	AZ1085CS2- 1.8E1	AZ1085CS2- 1.8G1	800/Tape & Reel
Pb Lead-free Green	TO263-2	0 to +125°C	AZ1085CS2- 2.5TRE1	AZ1085CS2- 2.5TRG1	AZ1085CS2- 2.5E1	AZ1085CS2- 2.5G1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1085CS2- 3.3TRE1	AZ1085CS2- 3.3TRG1	AZ1085CS2- 3.3E1	AZ1085CS2- 3.3G1	800/Tape & Reel
	TO263-2	0 to +125°C	AZ1085CS2- 5.0TRE1	AZ1085CS2- 5.0TRG1	AZ1085CS2- 5.0E1	AZ1085CS2- 5.0G1	800/Tape & Reel
	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1085CD- ADJTRG1	_	AZ1085CD- ADJG1	2500/Tap e & Reel
	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1085CD- 1.5TRG1	_	AZ1085CD- 1.5G1	2500/Tap e & Reel
Pb Lead-free Green	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1085CD- 1.8TRG1	_	AZ1085CD- 1.8G1	2500/Tap e & Reel
	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1085CD- 2.5TRG1	_	AZ1085CD- 2.5G1	2500/Tap e & Reel
	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1085CD- 3.3TRG1	_	AZ1085CD- 3.3G1	2500/Tap e & Reel
	TO252-2 (3)/(4)/(5)	0 to +125°C	_	AZ1085CD- 5.0TRG1	_	AZ1085CD- 5.0G1	2500/Tap e & Reel

Marking Information

(1) TO252-2 Series



(2) TO263-2 Series

(Top View)

(3) TO263 Series

First and Second Lines: Logo and Marking ID

(See Ordering Information) Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: 7th and 8th Digits of Batch Number

First and Second Lines: Logo and Marking ID (See Ordering Information) (G1 may be E1 depending on product) Third Line: Date Code

Y: Year

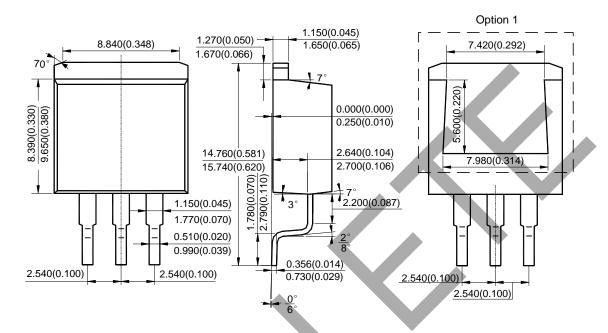
WW: Work Week of Molding A: Assembly House Code

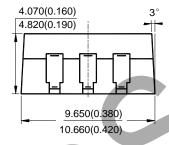
XX: 7th and 8th Digits of Batch Number

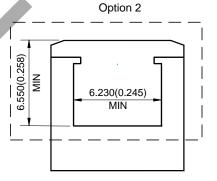
First and Second Lines: Logo and Marking ID

(See Ordering Information) (G1 may be E1 depending on product)

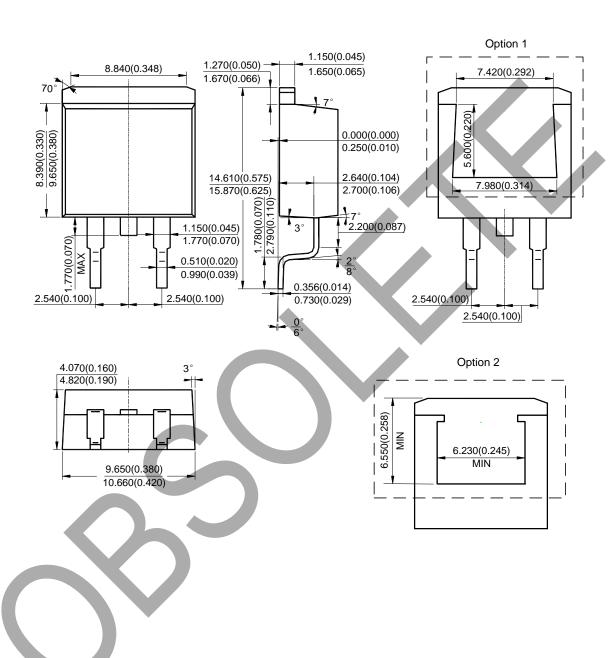
Third Line: Date Code

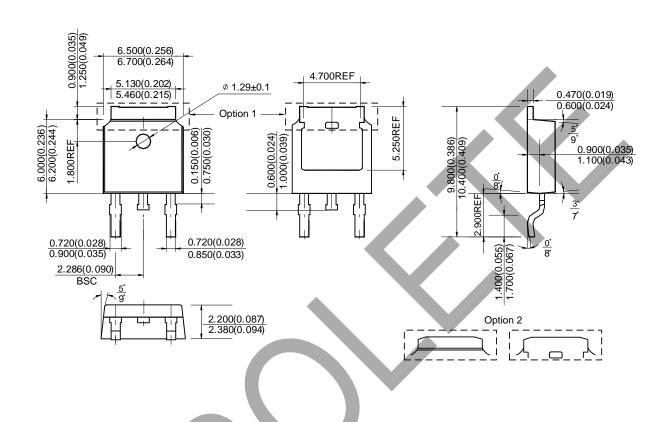

Y: Year


WW: Work Week of Molding A: Assembly House Code

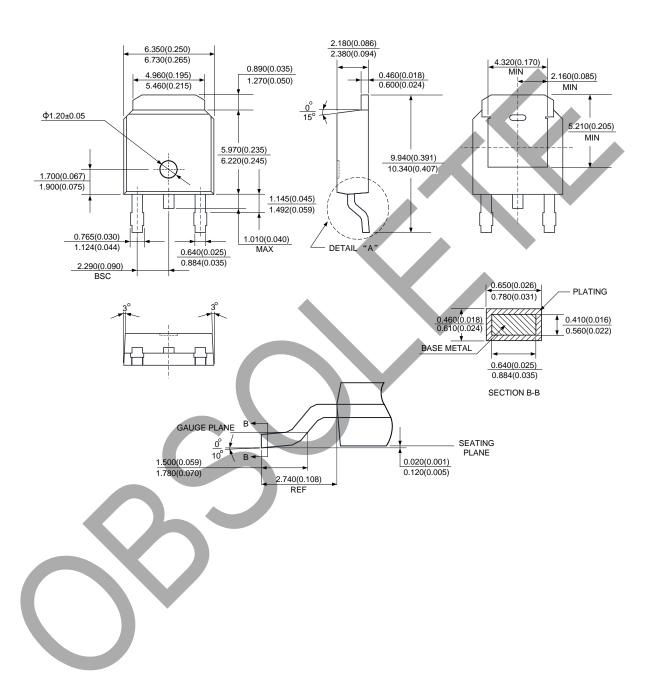

XX: 7th and 8th Digits of Batch Number

(1) Package Type: TO263

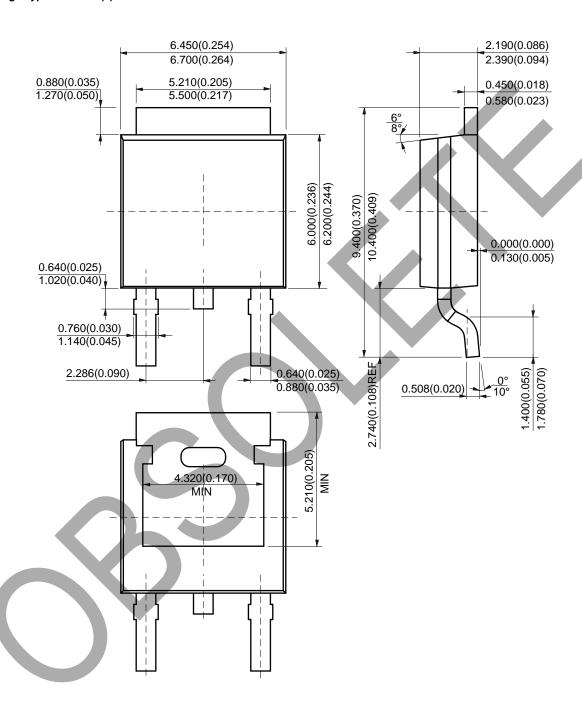




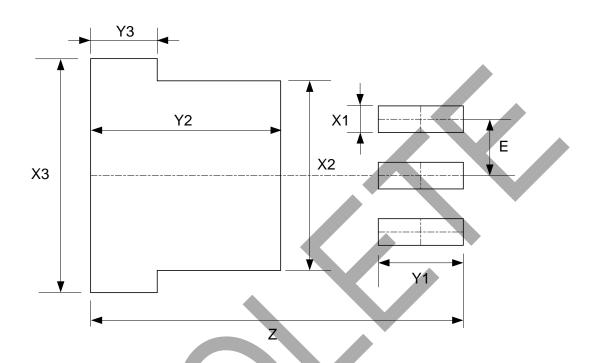
(2) Package Type: TO263-2



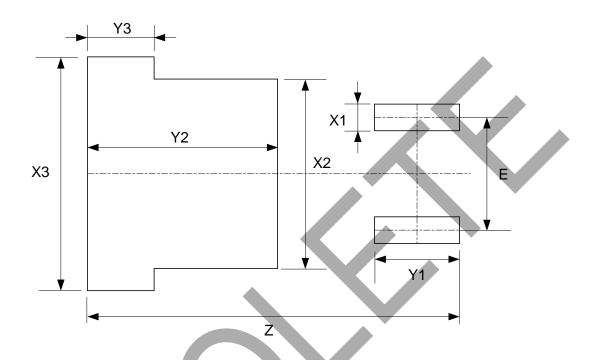
(3) Package Type: TO252-2 (3)



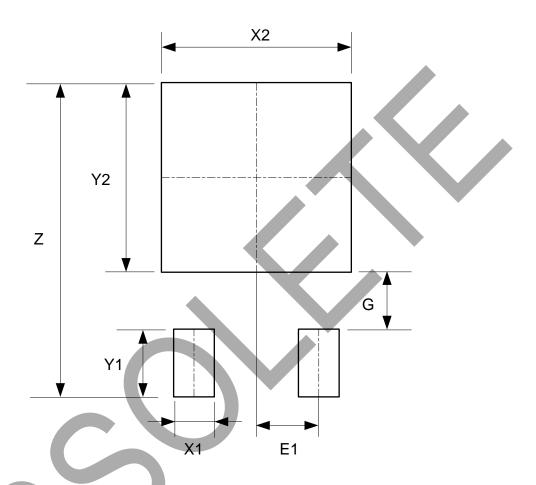
(4) Package Type: TO252-2 (4)


(5) Package Type: TO252-2 (5)

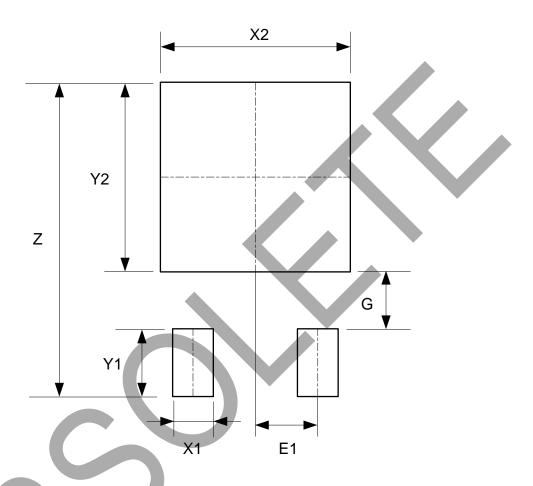
Suggested Pad Layout


(1) Package Type: TO263

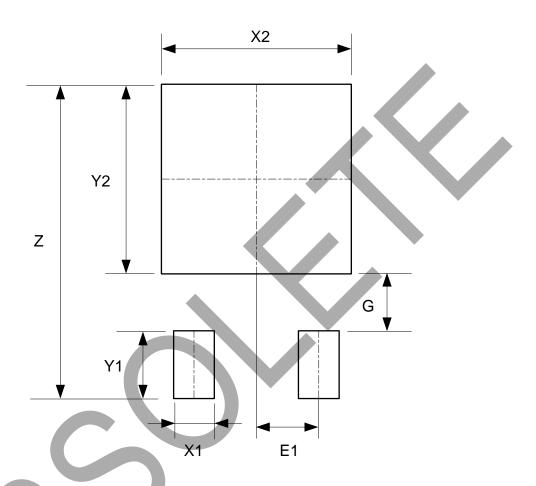
Dimensions	Z	X1	X2	X3
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	16.760/0.660	1.200/0.047	8.540/0.336	10.540/0.415
Dimensions	Y1	Y2	Y3	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.830/0.151	8.560/0.337	3.000/0.118	2.540/0.100


(2) Package Type: TO263-2

Dimensions	Z (mm)/(inch)	X1 (mm)/(inch)	X2 (mm)/(inch)	X3 (mm)/(inch)
Value	16.760/0.660	1.200/0.047	8.540/0.336	10.540/0.415
Dimensions	Y1 (mm)/(inch)	Y2 (mm)/(inch)	Y3 (mm)/(inch)	E (mm)/(inch)
Value	3.830/0.151	8.560/0.337	3.000/0.118	5.080/0.200


(3) Package Type: TO252-2 (3)

Dimensions	Z	X1	X2=Y2	Y1	G	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091


(4) Package Type: TO252-2 (4)

Dimensions	Z	X1	X2=Y2	Y1	G	E1
Dimensions	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

(5) Package Type: TO252-2 (5)

Dimensions	Z	X1	X2=Y2	Y1	G	E1
Dimensions	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com