PRECISION 2.5 VOLT MICROPOWER VOLTAGE REFERENCE

ISSUE 5 - JANUARY 2006

DEVICE DESCRIPTION

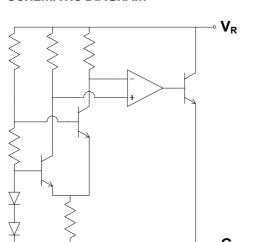
The ZRA250 uses a bandgap circuit design to achieve a precision micropower voltage reference of 2.5 volts. The device is available in small outline surface mount packages, ideal for applications where space saving is important.

The ZRA250 design provides a stable voltage without an external capacitor and is stable with capacitive loads. The ZRA250 is recommended for operation between $50\mu A$ and 5mA and so is ideally suited to low power and battery powered applications.

Excellent performance is maintained to an absolute maximum of 25mA, however the rugged design and 20 volt processing allows the reference to withstand transient effects and currents up to 200mA. Superior switching capability allows the device to reach stable operating conditions in only a few microseconds.

SCHEMATIC DIAGRAM

FEATURES


- Small outline SOT23, SO8 and TO92 style packages.
- No stabilising capacitor required
- Typical T_C 30ppm/°C
- Typical slope resistance 0.4Ω
- $\bullet~\pm$ 3%, 2%, 1% and 0.5% tolerance
- Industrial temperature range
- Operating current 50µA to 5mA
- Transient response, stable in less than 10μs
- Optional extended current range

APPLICATIONS

- Battery powered and portable equipment.
- Metering and measurement systems.
- Instrumentation.
- Test equipment.
- Data acquisition systems.
- Precision power supplies.

Note:

3%, 2% and 1% tolerance devices are not recommended for new designs. Refer to ZRC250

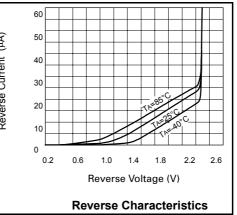
 \mathbf{G}_{nd}

ZRA250

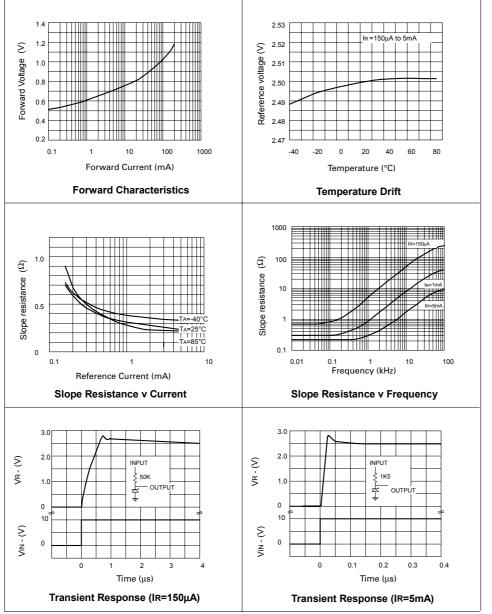
ZRA250

ABSOLUTE MAXIMUM RATING

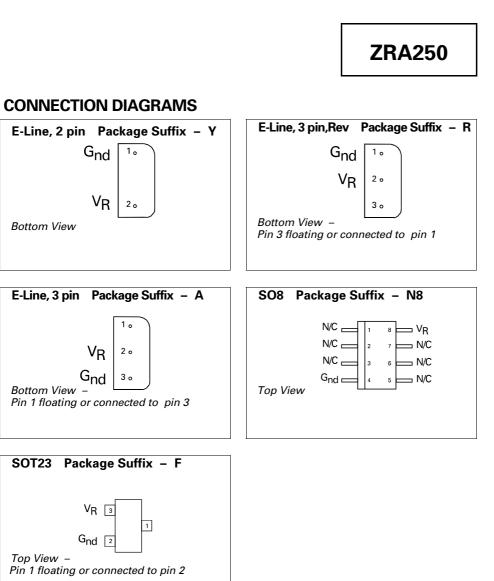
Reverse Current Forward Current **Operating Temperature** Storage Temperature


25mA 25mA -40 to 85°C -55 to 125°C Power Dissipation (Tamb=25°C) SOT23 E-Line, 3 pin (TO92) E-Line, 2 pin (TO92) S08

330mW 500mW 500mW 625mW


ELECTRICAL CHARACTERISTICS TEST CONDITIONS (Unless otherwise stated) T_{amb}=25°C

SYMBOL	PARAMETER	CONDITIONS	LIMITS			TOL. %	UNITS
			MIN	TYP	MAX		
V _R	Reverse Breakdown Voltage	Ι _R =150μΑ	2.4875 2.475 2.45 2.425	2.5 2.5 2.5 2.5	2.5125 2.525 2.55 2.575	0.5 1 2 3	V
I _{MIN}	Minimum Operating Current			25	50		μA
I _R	Recommended Operating Current		0.05		5		mA
T _C †	Average Reverse Breakdown Voltage Temp. Co.	I _{R(min)} to		30	90		ppm/°C
R _S §	Slope Resistance	I _{R(max)}		0.4	2		Ω
Z _R	Reverse Dynamic Impedance	$I_{R} = 1mA$ f = 100Hz I _{AC} =0.1 I _R		0.3	0.8		Ω
E _N	Wideband Noise Voltage	$\begin{array}{rl} I_{R} = & 150 \mu A \\ f &= & 10 Hz \ to \\ & & 10 k Hz \end{array}$		45			μV(rms)


$$\begin{array}{c|c} t & T_{C} = \frac{(V_{R(max)} - V_{R(min)}) \times 1000000}{V_{R} \times (T_{(max)} - T_{(min)})} \\ \text{Note: } V_{R(max)} - V_{R(min)} \text{ is the maximum} \\ \text{deviation in reference voltage measured} \\ \text{over the full operating temperature} \\ \text{range.} \\ \text{\$} & R_{S} = \frac{V_{R} Change (I_{R} (min) \text{ to } I_{R} (max))}{I_{R} (max) - I_{R} (min)} \\ \end{array}$$

ZRA250

TYPICAL CHARACTERISTICS

ZRA250

ORDERING INFORMATION

Part No	Tol%	Package	Partmark
ZRA250A03	3	E-Line •	ZRA25003
ZRA250A02	2	E-Line •	ZRA25002
ZRA250A01	1	E-Line •	ZRA25001
ZRA250A005	0.5	E-Line •	ZRA250005
ZRA250F03	3	SOT23	25A
ZRA250F02	2	SOT23	25C
ZRA250F01	1	SOT23	25B
ZRA250F005	0.5	SOT23	25Y
ZRA250N803	3	SO8	ZRA25003
ZRA250N802	2	SO8	ZRA25002
ZRA250N801	1	SO8	ZRA25001
ZRA250N8005	0.5	SO8	ZRA250005

Part No	Tol%	Package	Partmark
ZRA250R03	3	E-Line *	ZRA250R3
ZRA250R02	2	E-Line *	ZRA250R2
ZRA250R01	1	E-Line *	ZRA250R1
ZRA250R005	0.5	E-Line *	ZRA250R05
ZRA250Y03	3	E-Line †	ZRA25003
ZRA250Y02	2	E-Line †	ZRA25002
ZRA250Y01	1	E-Line †	ZRA25001
ZRA250Y005	0.5	E-Line †	ZRA250005

* E-Line 3 pin Reversed
† E-Line 2 pin
• E-Line 3 pin

Note:

3%, 2% and 1% tolerance devices are not recommended for new designs. Refer to ZRC250