Features

- Single-Supply Operation (+2V to +6 V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (6 $\mathbf{~}$ typ. with 5 V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3Ω typ.
- Low Charge Injection Reduces Glitch Errors. $\mathrm{Q}=4 \mathrm{pC}$ typ.
- High Speed. $\mathrm{t}_{\mathrm{ON}}=10 \mathrm{~ns}$ typ.
- Wide -3dB Bandwidth: 326 MHz (typ.)
- High-Current Channel Capability: > 100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption ($0.5 \mu \mathrm{~W}$ typ)
- Small outline transistor package minimizes board area
- Packaging (Pb-free \& Green available):
- 5-pin 65-mil wide SOT23 (T) for PI5A121 and PI5A122
- 6-pin 65-mil wide SOT23 (T) for PI5A124
- 5-pin 50-mil wide SC70 (C) for PI5A121/PI5A122

Description

The PI5A121/PI5A122/PI5A124 are analog switches designed for single-supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.
The PI5A121 is a single-pole throw (SPST) normally open (NO) switch. The switch is open when IN is LOW. The PI5A122 is a single-pole single-throw (SPST) normally closed (NC) switch.
Each switch conducts current equally well in either direction when on. When off, they block voltages up to V+.
These switches are fully specified with +5 V , and +3.3 V supplies. With +5 V , they guarantee $<10 \Omega$ On-Resistance. On-Resistance matching between channels is within 2Ω. On-Resistance flatness is less than 55Ω over the specified range. These switches also guarantee fast switching speeds ($\mathrm{t}_{\mathrm{ON}}<20 \mathrm{~ns}$).
These products are available in 5-pin SC70 and/or 6-pin SOT23 plastic packages for operation over the industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications

- Audio, Video Switching, and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- Mechanical Relay Replacement
- Cell Phones
- PDAs

Functional Diagrams, Pin Configurations and Truth Tables

Switches shown for Logic "0" input

IN	PI5A121	PI5A122
0	OFF	ON
1	ON	OFF

	PI5A124	
LOGIC	NC	NO
0	ON	OFF
1	OFF	ON

Absolute Maximum Ratings
Voltages Referenced to Gnd V+ \qquad -0.5 V to +7 V
$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{COM}}, \mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}$ (Note 1) \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+2 \mathrm{~V}$
or 30 mA , whichever occurs first
Current (any terminal) \qquad $\pm 25 \mathrm{~mA}$
Peak Current, COM, NO, NC
(Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle) \qquad $\pm 25 \mathrm{~mA}$

Thermal Information

Continuous Power Dissipation
SOT23-6 (derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
550 mW
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) \qquad $+300^{\circ} \mathrm{C}$

Note 1 :
Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30 mA .

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5 V Supply

$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	Vanalog		Full	0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+2.5 \mathrm{~V} \end{aligned}$	25		7.2	10	Ω
			Full			12	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		25		0.2	2	
			Full			4	
On-Resistance Flatness ${ }^{(5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.5 \mathrm{~V}, 4 \mathrm{~V} \end{aligned}$	25		2.72	3.5	
			Full			4	
NO or NC Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ or $\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V} \\ & \hline \end{aligned}$	25		0.18		nA
			Full	-80		80	
COM Off Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM }}(\mathrm{OFF})$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=+4.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}= \pm 0 \mathrm{~V} \end{aligned}$	25		0.20		
			Full	-80		80	
COM On Leakage Current ${ }^{(6)}$	$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=+4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=+4.5 \mathrm{~V} \end{aligned}$	25		0.20		
			Full	-80		80	

Electrical Specifications - Single $\mathbf{+ 5 V}$ Supply (continued)
$\left(\mathrm{V}+=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Min. ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max. ${ }^{(1)}$	Units
Logic Input							
Input High Voltage	V_{IH}	Guaranteed logic High Level	Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Guaranteed logic Low Level				0.8	
Input Current with Voltage High	$\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$		-1	0.005	1	$\mu \mathrm{A}$
Input Current with Voltage Low	$\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$		-1	0.005	1	

Dynamic

Turn-On Time	ton	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, Figure 1	25	7	15	ns
			Full		20	
Turn-Off Time	toFF		25	1	7	
			Full		10	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \text { Figure } 2 \end{aligned}$	25	1.6	10	pC
Off Isolation	$\mathrm{O}_{\text {IRR }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{f}=10 \mathrm{MHz}, \text { Figure } 3 \end{aligned}$		-43		dB
Crosstalk ${ }^{(8)}$	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=10 \mathrm{MHz}, \text { Figure } 4 \end{aligned}$		-43		
NC or NO Capacitance	$\mathrm{C}_{\text {(OFF) }}$	$\mathrm{f}=1 \mathrm{kHz}$, Figure 5		5.5		pF
COM Off Capacitance	$\mathrm{C}_{\text {COM(OFF) }}$			5.5		
COM On Capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{f}=1 \mathrm{kHz}$, Figure 6		13		
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, Figure 7	Full	326		MHz

Supply

Power-Supply Range	V+		Full	2	6	V
Positve Supply Current	I+	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$			1	$\mu \mathrm{A}$

Notes:

1. The algebraic convention, where most negative value is a minimum and most positive is a maximum, is used in this data sheet.
2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
3. Guaranteed by design
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$
5. Flatness is defined as the difference between the maximum and minimum value of On-Resistance measured.
6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
7. Off Isolation $=20 \log _{10}\left[\mathrm{~V}_{\mathrm{COM}} /\left(\mathrm{V}_{\mathrm{NO}}\right.\right.$ or $\left.\left.\mathrm{V}_{\mathrm{NC}}\right)\right]$. See Figure 3.
8. Between any two switches. See Figure 4.

Electrical Specifications - Single +3.3 V Supply
$\left(\mathrm{V}+=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Min.(1)	Typ.(2)	Max.(1)	Units
Analog Switch							
Analog Signal Range ${ }^{(3)}$	VANALOG			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V} \end{aligned}$	25		12	18	
			Full			22	
On-Resistance Match Between Channels ${ }^{(4)}$	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.8 \mathrm{~V}, 2.5 \mathrm{~V} \end{aligned}$	25		1	1	ת
			Full			2	Ω
On-Resistance Flatness ${ }^{(3,5)}$	$\mathrm{R}_{\text {FLAT(ON) }}$		25		0.5	4	
			Full			5	

Dynamic

Turn-On Time	ton	$\begin{aligned} & \mathrm{V}+=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \end{aligned}$ Figure 1	25	15	25	ns
			Full		40	
Turn-Off Time	toff		25	1.5	12	
			Full		20	
Charge Injection ${ }^{(3)}$	Q	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~V}, \text { Figure } 2 \\ & \hline \end{aligned}$	25	1.3	10	pC

Supply

Positve Supply Current	I +	V $+=3.6 \mathrm{~V}, \mathrm{~V}$ IN $=0 \mathrm{~V}$ or V + All Channels on or off	Full		1	$\mu \mathrm{~A}$

Logic Input

Input High Voltage	V_{IH}	Guaranteed logic high level	Full	2			V
Input Low Voltage	V_{IL}	Guaranteed logic low level	Full			0.8	
Input High Current	$\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, all others $=0.8 \mathrm{~V}$	Full	-1		1	$\mu \mathrm{~A}$
Input Low Current	$\mathrm{I}_{\mathrm{INL}}$	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$, all others $=2.4 \mathrm{~V}$	Full	-1		1	

Test Circuits/Timing Diagrams

C_{L} INCLUDES FIXTURE AND STRAY CAPACITANCE
$V_{\text {OUT }}=V_{\text {NO }}\left(\frac{R_{L}}{R_{L+} R_{\text {ON }}}\right)$

LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES THAT HAVE OPPOSITE LOGIC

* 1.5V FOR 3.3V SUPPLY

Figure 1. Switching Time

Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 3. Off Isolation

Figure 5. Channel-Off Capacitance

Figure 7. Bandwidth

Figure 4. Crosstalk (124 only)

Figure 6. Channel-On Capacitance

Packaging Mechanical: 5-pin SC70 (C)

Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Packaging Mechanical: 5-pin SOT23 (T)

09-0130
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Packaging Mechanical: 6-pin SOT23 (T)

TOP VIEW

SIDE VIEW

NOTE

1. ALL DIMENSIONS IN MILLIMETERS. ANGLES IN DEGREES.
2. DIMENSIONS EXCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. 3. REFER EIAJ SC74A AND JEDEC MO-178.

DETALL B

SYMBOLS	MIN.	NOM.	MAX.
A	-	-	1.45
A1	0.00	-	0.15
A2	0.90	1.15	1.30
b	0.35	--	0.50
c	0.08	--	0.22
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.60	1.75
L	0.30	0.45	0.60
L1	0.60 REF		
R	0.10	--	--
R1	0.10	--	0.25
θ	0	4	$8 \cdot$
e	0.95 BSC		
e1	1.90 BSC		

09-0131
Note:

- For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordeing Code	Packaging Code	Package Type	Top Marking
PI5A121TX	T	5-pin, 65-mil wide SOT-23	ZV
PI5A121TEX	T	Pb -free \& Green, 5-pin, 65-mil wide SOT23	$\overline{\mathrm{Z}} \mathrm{V}$
PI5A121CEX	C	Pb -free \& Green, 5-pin, 50-mil wide SOT23	$\overline{\mathrm{Z}} \mathrm{V}$
PI5A122TEX	T	Pb-free \& Green, 5-pin, 65-mil wide SOT23	$\overline{\mathrm{Z} U}$
PI5A122CEX	C	Pb-free \& Green, 5-pin, 50-mil wide SOT23	$\overline{\mathrm{Z} U}$
PI5A124TX	T	6-pin, 65-mil wide SOT23	ZT
PI5A124TEX	T	Pb-free \& Green, 6-pin, 65-mil wide SOT23	$\overline{\mathrm{Z} T}$

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- $\mathrm{E}=\mathrm{Pb}$-free and Green
- Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

