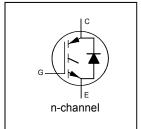
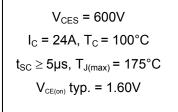
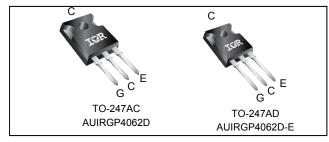


# **AUTOMOTIVE GRADE**


#### INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE


## **Features**


- Low V<sub>CE (on)</sub> Trench IGBT Technology
- · Low Switching Losses
- 5µs SCSOA
- Square RBSOA
- 100% of The Parts Tested for ILM①
- Positive V<sub>CE (on)</sub> Temperature Coefficient.
- Ultra Fast Soft Recovery Co-pak Diode
- Tighter Distribution of Parameters
- · Lead-Free, RoHS Compliant
- Automotive Qualified \*

#### **Benefits**

- High Efficiency in a Wide Range of Applications
- Suitable for a Wide Range of Switching Frequencies due to Low V<sub>CE (ON)</sub> and Low Switching Losses
- Rugged Transient Performance for Increased Reliability
- Excellent Current Sharing in Parallel Operation
- Low EMI







| G    | С         | E       |
|------|-----------|---------|
| Gate | Collector | Emitter |

| Page Part Number | Dookogo Typo | Standard P | ack      | Ordereble Best Number |
|------------------|--------------|------------|----------|-----------------------|
| Base Part Number | Package Type | Form       | Quantity | Orderable Part Number |
| AUIRGP4062D      | TO-247AC     | Tube       | 25       | AUIRGP4062D           |
| AUIRGP4062D-E    | TO-247AD     | Tube       | 25       | AUIRGP4062D-E         |

# **Absolute Maximum Ratings**

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T<sub>A</sub>) is 25°C, unless otherwise specified.

|                                                       | Parameter                                            | Max.                             | Units |
|-------------------------------------------------------|------------------------------------------------------|----------------------------------|-------|
| V <sub>CES</sub>                                      | Collector-to-Emitter Voltage                         | 600                              | V     |
| I <sub>C</sub> @ T <sub>C</sub> = 25°C                | Continuous Collector Current                         | 48                               |       |
| I <sub>C</sub> @ T <sub>C</sub> = 100°C               | Continuous Collector Current                         | 24                               |       |
| I <sub>CM</sub>                                       | Pulse Collector Current V <sub>GE</sub> =15V         | 72                               |       |
| I <sub>LM</sub>                                       | Clamped Inductive Load Current V <sub>GE</sub> =20V① | 96                               | Α     |
| I <sub>F</sub> @ T <sub>C</sub> = 25°C                | Diode Continuous Forward Current                     | 48                               |       |
| I <sub>F</sub> @ T <sub>C</sub> = 100°C               | Diode Continuous Forward Current                     | 24                               |       |
| I <sub>FSM</sub> Maximum Repetitive Forward Current ③ |                                                      | 96                               |       |
| $V_{\sf GE}$                                          | Continuous Gate-to-Emitter Voltage                   | ±20                              | V     |
|                                                       | Transient Gate-to-Emitter Voltage                    | ±30                              |       |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C                | Maximum Power Dissipation                            | 250                              | ١٨/   |
| P <sub>D</sub> @ T <sub>C</sub> = 100°C               | Maximum Power Dissipation                            | 125                              | W     |
| T <sub>J</sub> Operating Junction and                 |                                                      | -55 to +175                      |       |
| T <sub>STG</sub> Storage Temperature Range            |                                                      |                                  | °C    |
|                                                       | Soldering Temperature, for 10 sec.                   | 300 (0.063 in.(1.6mm) from case) |       |
|                                                       | Mounting Torque, 6-32 or M3 Screw                    | 10 lbf·in (1.1 N·m)              |       |

# **Thermal Resistance**

|                         | Parameter                                                             | Min. | Тур. | Max. | Units |
|-------------------------|-----------------------------------------------------------------------|------|------|------|-------|
| $R_{\theta JC}$ (IGBT)  | Thermal Resistance Junction-to-Case (each IGBT) TO-247                |      |      | 0.65 |       |
| $R_{\theta JC}$ (Diode) | Thermal Resistance Junction-to-Case (each Diode) TO-247               |      |      | 1.62 | °C/W  |
| $R_{\theta CS}$         | Thermal Resistance, Case-to-Sink (flat, greased surface) TO-247       |      | 0.24 |      | C/VV  |
| $R_{\theta JA}$         | Thermal Resistance, Junction-to-Ambient (typical socket mount) TO-247 |      | 40   |      |       |

<sup>\*</sup> Qualification standards can be found at www.infineon.com



# AUIRGP4062D/AUIRGP4062D-E

Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                   | Parameter                               | Min. | Тур. | Max. | Units | Conditions                                                                      | Ref.    |
|-----------------------------------|-----------------------------------------|------|------|------|-------|---------------------------------------------------------------------------------|---------|
| V <sub>(BR)CES</sub>              | Collector-to-Emitter Breakdown Voltage  | 600  | _    | _    | V     | $V_{GE} = 0V, I_{C} = 100\mu A$                                                 | CT6     |
| $\Delta V_{(BR)CES}/\Delta T_{J}$ | Temperature Coeff. of Breakdown Voltage | _    | 0.30 | _    | V/°C  | $V_{GE} = 0V, I_{C} = 1mA (25^{\circ}C-175^{\circ}C)$                           |         |
|                                   |                                         | _    | 1.60 | 1.95 |       | $I_C$ = 24A, $V_{GE}$ = 15V, $T_J$ = 25°C                                       | 5,6,7   |
| $V_{CE(on)}$                      | Collector-to-Emitter Saturation Voltage | _    | 2.03 | _    | V     | $I_C = 24A, V_{GE} = 15V, T_J = 150$ °C                                         | 9,10,11 |
| ,                                 |                                         | _    | 2.04 | _    |       | $I_C = 24A, V_{GE} = 15V, T_J = 175^{\circ}C$                                   |         |
| $V_{GE(th)}$                      | Gate Threshold Voltage                  | 4.0  | _    | 6.5  | V     | I <sub>C</sub> = 700μA                                                          | 9,10,   |
| $\Delta V_{GE(th)}/\Delta TJ$     | Threshold Voltage temp. coefficient     | _    | -18  | _    | mV/°C | $V_{CE} = V_{GE}, I_C = 1.0 \text{mA} (25^{\circ}\text{C}-175^{\circ}\text{C})$ | 11,12   |
| gfe                               | Forward Transconductance                | _    | 17   | _    | S     | $V_{CE} = 50V, I_{C} = 24A,PW = 80\mu s$                                        |         |
|                                   | Collector-to-Emitter Leakage Current    | _    | 2.0  | 25   |       | $V_{GE} = 0V, V_{CE} = 600V$                                                    |         |
| I <sub>CES</sub>                  |                                         | _    | 775  | _    | μΑ    | $V_{GE} = 0V, V_{CE} = 600V, T_{J} = 175^{\circ}C$                              |         |
| \                                 | Diede Ferward Veltage Dress             | _    | 1.80 | 2.6  | .,    | I <sub>F</sub> = 24A                                                            | 0       |
| $V_{FM}$                          | Diode Forward Voltage Drop              |      | 1.28 |      | V     | I <sub>F</sub> = 24A, T <sub>J</sub> = 175°C                                    | 8       |
| I <sub>GES</sub>                  | Gate-to-Emitter Leakage Current         | _    | _    | ±100 | nA    | $V_{GE} = \pm 20V$ , $V_{CE} = 0V$                                              |         |

# Switching Characteristics @ T<sub>1</sub> = 25°C (unless otherwise specified)

|                     | Parameter                            | Min. | Тур.   | Max. | Units | Conditions                                                               | Ref. Fig. |
|---------------------|--------------------------------------|------|--------|------|-------|--------------------------------------------------------------------------|-----------|
| Q <sub>g</sub>      | Total Gate Charge (turn-on)          | _    | 50     | 75   |       | I <sub>C</sub> = 24A                                                     | 24        |
| Q <sub>ge</sub>     | Gate-to-Emitter Charge (turn-on)     |      | 13     | 20   | nC    | V <sub>GE</sub> = 15V                                                    | CT1       |
| $Q_{gc}$            | Gate-to-Collector Charge (turn-on)   | _    | 21     | 31   |       | V <sub>CC</sub> = 400V                                                   |           |
| Eon                 | Turn-On Switching Loss               | _    | 115    | 201  |       |                                                                          |           |
| E <sub>off</sub>    | Turn-Off Switching Loss              | _    | 600    | 700  | μJ    |                                                                          |           |
| E <sub>total</sub>  | Total Switching Loss                 | _    | 715    | 901  |       | $I_C = 24A, V_{CC} = 400V,$                                              |           |
| t <sub>d(on)</sub>  | Turn-On delay time                   | _    | 41     | 53   |       | $V_{GE} = +15V, T_J = 25^{\circ}C$                                       | OT4       |
| t <sub>r</sub>      | Rise time                            | _    | 22     | 31   | ns    | $R_G = 10\Omega$ , L = 200 $\mu$ H,L <sub>S</sub> = 150nH,               | CT4       |
| t <sub>d(off)</sub> | Turn-Off delay time                  | _    | 104    | 115  |       | Energy losses include tail & diode                                       |           |
| t <sub>f</sub>      | Fall time                            | _    | 29     | 41   |       | reverse recovery                                                         |           |
| E <sub>on</sub>     | Turn-On Switching Loss               | _    | 420    | _    |       |                                                                          | 13,15,    |
| E <sub>off</sub>    | Turn-Off Switching Loss              | _    | 840    | _    | μJ    |                                                                          | CT4       |
| E <sub>total</sub>  | Total Switching Loss                 | _    | 1260   | _    |       | $I_C = 24A, V_{CC} = 400V,$                                              | WF1,WF2   |
| $t_{d(on)}$         | Turn-On delay time                   | _    | 40     | _    |       | V <sub>GE</sub> = +15V,T <sub>J</sub> = 175°C ④                          | 14,16     |
| t <sub>r</sub>      | Rise time                            | _    | 24     | _    | ns    | $R_G = 10\Omega$ , L = 200 $\mu$ H, L <sub>S</sub> = 150nH               | CT4       |
| $t_{d(off)}$        | Turn-Off delay time                  | _    | 125    |      |       | Energy losses include tail & diode                                       | WF1       |
| t <sub>f</sub>      | Fall time                            | _    | 39     |      |       | reverse recovery                                                         | WF2       |
| C <sub>ies</sub>    | Input Capacitance                    | _    | 1490   |      |       | $V_{GE} = 0V$                                                            |           |
| C <sub>oes</sub>    | Output Capacitance                   | _    | 129    |      | pF    | V <sub>CC</sub> = 30V                                                    | 23        |
| C <sub>res</sub>    | Reverse Transfer Capacitance         | _    | 45     | _    | 1     | f = 1.0Mhz                                                               |           |
|                     |                                      |      |        |      |       | $T_J = 175^{\circ}C, I_C = 96A$                                          | 4         |
| RBSOA               | Reverse Bias Safe Operating Area     | FUL  | L SQUA | RE   |       | V <sub>CC</sub> = 480V, Vp = 600V                                        | CT2       |
|                     |                                      |      |        |      |       | Rg = $10\Omega$ , $V_{GE}$ = +20V to 0V                                  |           |
| SCSOA               | Short Circuit Safe Operating Area    | 5    | _      | _    | μS    | V <sub>CC</sub> = 400V, Vp = 600V                                        | 22,CT3    |
| F                   | Davaraa Daaayan, Energy of the Diede |      | 624    |      |       | Rg = $10\Omega$ , V <sub>GE</sub> = +15V to 0V<br>T <sub>J</sub> = 175°C | WF4       |
| E <sub>rec</sub>    | Reverse Recovery Energy of the Diode |      |        |      | μJ    | i ~                                                                      | 17,18,19, |
| t <sub>rr</sub>     | Diode Reverse Recovery Time          |      | 89     | _    | ns    | $V_{CC} = 400 \text{V}, I_F = 24 \text{A}, V_{GE} = 15 \text{V},$        | 20,21     |
| I <sub>rr</sub>     | Peak Reverse Recovery Current        | _    | 37     |      | Α     | $R_G = 10\Omega$ , $L = 200\mu H$ , $L_S = 150 nH$                       | WF3       |

### Notes:

- $V_{CC}$  = 80% (V<sub>CES</sub>), V<sub>GE</sub> = 20V, L = 100  $\mu H,$  R<sub>G</sub> = 10  $\Omega.$  This is only applied to TO-220AB package.
- Pulse width limited by max. junction temperature.
- Refer to AN-1086 for guidelines for measuring  $V_{(BR)CES}$  safely.

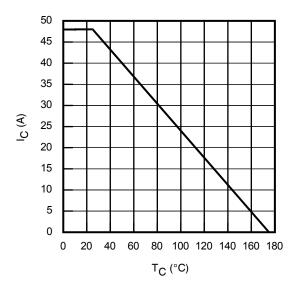



Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

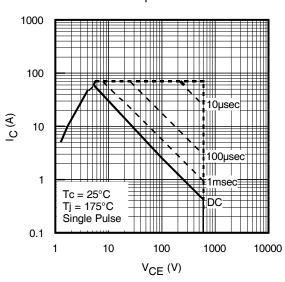



Fig. 3 - Forward SOA

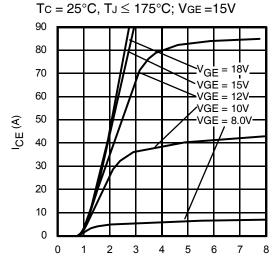
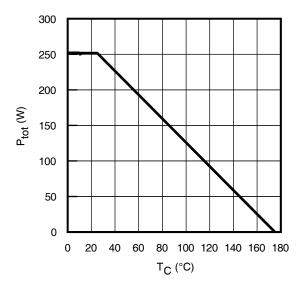




Fig. 5 - Typ. IGBT Output Characteristics  $T_J = -40$ °C; tp = 80 $\mu$ s

 $V_{CE}(V)$ 



**Fig. 2** - Power Dissipation vs. Case Temperature

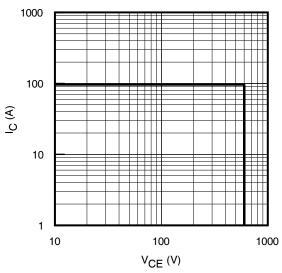



Fig. 4 - Reverse Bias SOA  $T_J$  = 175°C;  $V_{GE}$  =20V

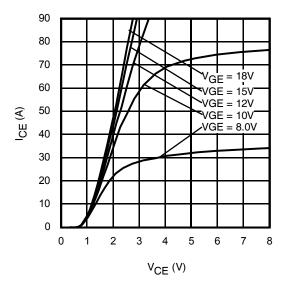



Fig. 6 - Typ. IGBT Output Characteristics  $T_J = 25^{\circ}C$ ; tp = 80µs



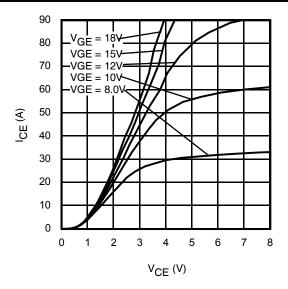



Fig. 7 - Typ. IGBT Output Characteristics

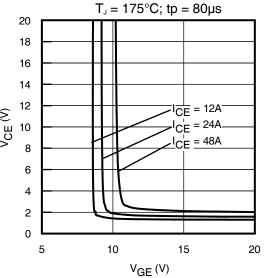



Fig. 9 - Typical  $V_{CE}$  vs.  $V_{GE}$  $T_J = -40^{\circ}C$ 

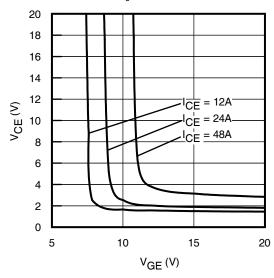
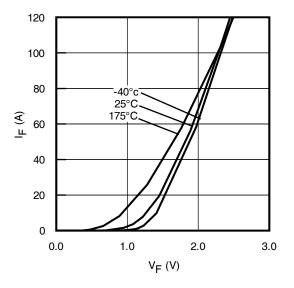




Fig. 11 - Typical  $V_{CE}$  vs.  $V_{GE}$   $T_J$  = 175°C



**Fig. 8** - Typ. Diode Forward Characteristics tp = 80µs

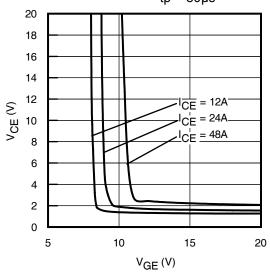



Fig. 10 - Typical  $V_{CE}$  vs.  $V_{GE}$  $T_J = 25^{\circ}C$ 

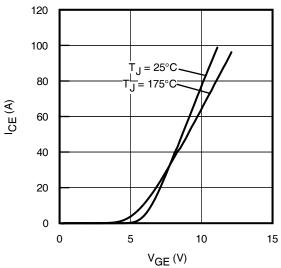



Fig. 12 - Typ. Transfer Characteristics  $V_{CE}$  = 50V; tp = 10 $\mu$ s

# AUIRGP4062D/AUIRGP4062D-E

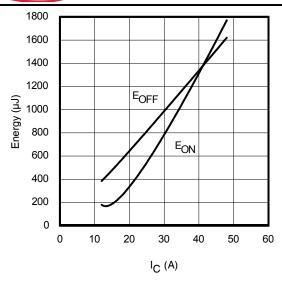



Fig. 13 - Typ. Energy Loss vs.  $I_C$   $T_J$  = 175°C; L = 200 $\mu$ H;  $V_{CE}$  = 400V,  $R_G$  = 10 $\Omega$ ;  $V_{GE}$  = 15V

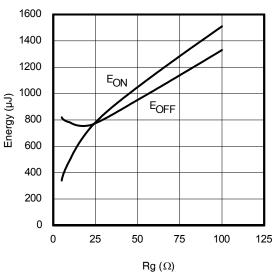



Fig. 15 - Typ. Energy Loss vs.  $R_G$   $T_J$  = 175°C; L = 200 $\mu$ H;  $V_{CE}$  = 400V,  $I_{CE}$  = 24A;  $V_{GE}$  = 15V

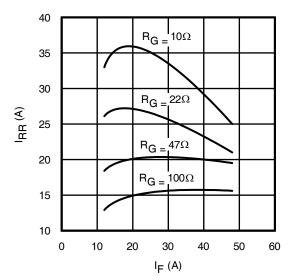



Fig. 17 - Typ. Diode  $I_{RR}$  vs.  $I_F$  $T_J = 175$ °C

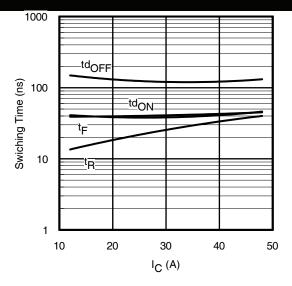



Fig. 14 - Typ. Switching Time vs.  $I_C$   $T_J$  = 175°C; L = 200 $\mu$ H;  $V_{CE}$  = 400V,  $R_G$  = 10 $\Omega$ ;  $V_{GE}$  = 15V

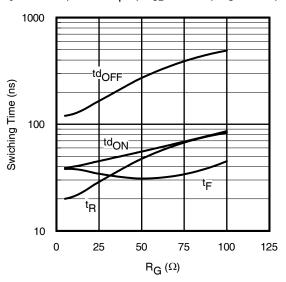



Fig. 16 - Typ. Switching Time vs.  $R_G$   $T_J$  = 175°C; L = 200 $\mu$ H;  $V_{CE}$  = 400V,  $I_{CE}$  = 24A;  $V_{GE}$  = 15V

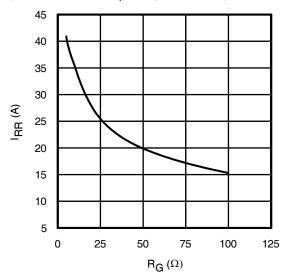



Fig. 18 Typ. Diode  $I_{RR}$  vs.  $R_G$  $T_J = 175$ °C

# AUIRGP4062D/AUIRGP4062D-E

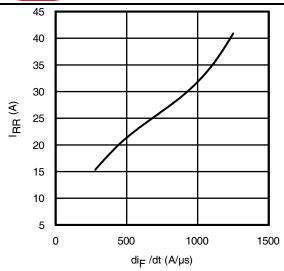



Fig. 19 - Typ. Diode  $I_{RR}$  vs.  $d_{iF}/dt$   $V_{CC}$  = 400V;  $V_{GE}$  = 15V;  $I_F$  = 24A;  $T_J$  = 175°C

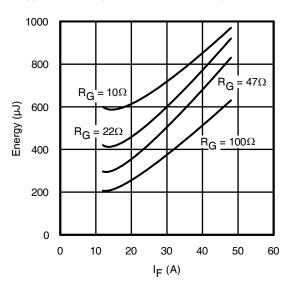



Fig. 21 - Typ. Diode  $E_{RR}$  vs.  $I_F$  $T_J = 175$ °C

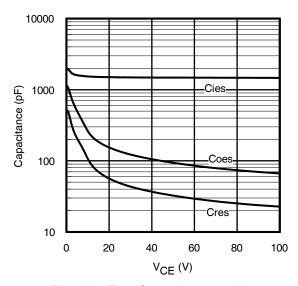
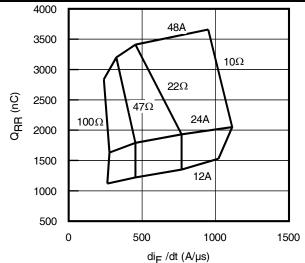




Fig. 23 - Typ. Capacitance vs.  $V_{CE}$  $V_{GE}$  = 0V; f = 1MHz



**Fig. 20** - Typ. Diode QRR vs.  $d_{iF}/dt$   $V_{CC} = 400V$ ;  $V_{GE} = 15V$ ;  $T_{J} = 175^{\circ}C$ 

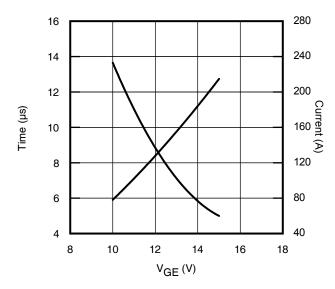



Fig. 22 -  $V_{GE}$  vs. Short Circuit Time  $V_{CC}$  = 400V;  $T_{C}$  = 25°C

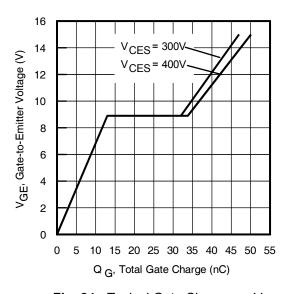



Fig. 24 - Typical Gate Charge vs.  $V_{GE}$  $I_{CE}$  = 24A; L = 600 $\mu$ H



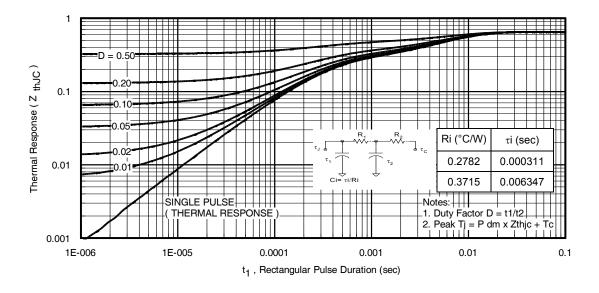



Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

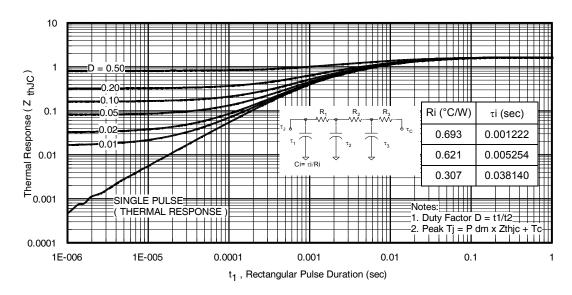
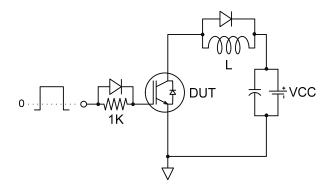




Fig 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

7 2017-08-25





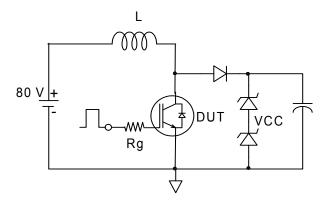



Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.2 - RBSOA Circuit

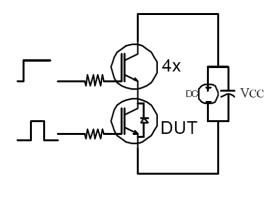



Fig.C.T.3 - S.C. SOA Circuit

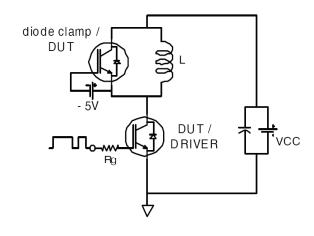



Fig.C.T.4 - Switching Loss Circuit

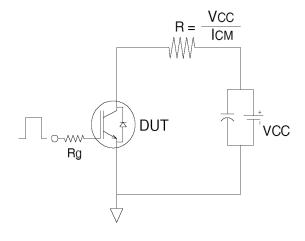



Fig.C.T.5 - Resistive Load Circuit

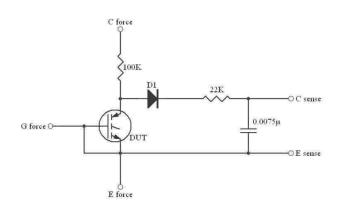
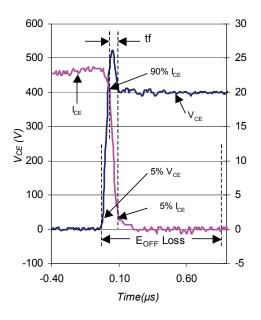




Fig.C.T.6 - BVCES Filter Circuit





**Fig. WF1** - Typ. Turn-off Loss Waveform @ T<sub>J</sub> = 175°C using Fig. CT.4

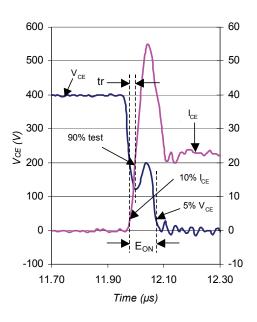
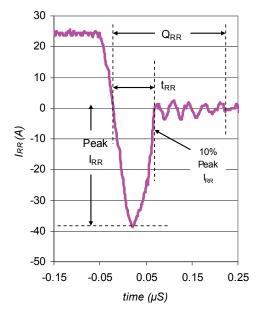
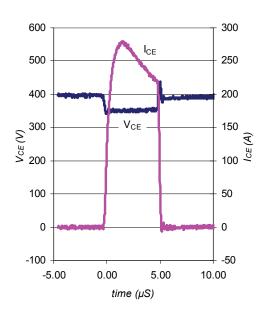
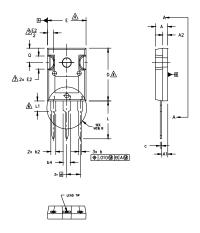



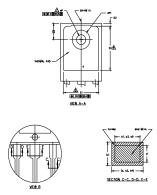

Fig. WF2 - Typ. Turn-on Loss Waveform  $@T_J = 175^{\circ}C$  using Fig. CT.4



**Fig. WF3** - Typ. Diode Recovery Waveform @ T<sub>J</sub> = 175°C using Fig. CT.4





Fig. WF4 - Typ. S.C. Waveform


@ T<sub>J</sub> = 25°C using Fig. CT.3



# TO-247AC Package Outline

(Dimensions are shown in millimeters (inches))





#### NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
PER SIDE. THESE DIMENSIONS ARE WEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 'TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

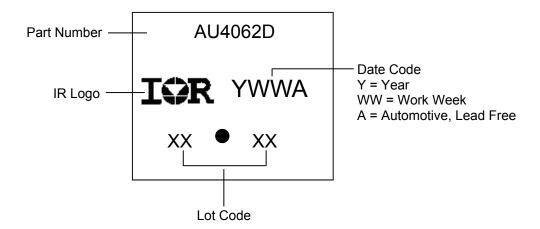
OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

|        | DIMENSIONS |      |          |       |       |
|--------|------------|------|----------|-------|-------|
| SYMBOL | INCI       | HES  | MILLIN   | ETERS | ]     |
|        | MIN. MAX.  |      | MIN.     | MAX.  | NOTES |
| Α      | .183       | .209 | 4.65     | 5.31  |       |
| A1     | .087       | .102 | 2.21     | 2.59  |       |
| A2     | .059       | .098 | 1.50     | 2.49  |       |
| b      | .039       | .055 | 0.99     | 1.40  |       |
| ь1     | .039       | .053 | 0.99     | 1.35  |       |
| b2     | .065       | .094 | 1.65     | 2.39  |       |
| b3     | .065       | .092 | 1.65     | 2.34  |       |
| b4     | .102       | .135 | 2.59     | 3.43  |       |
| b5     | .102       | .133 | 2.59     | 3.38  |       |
| С      | .015       | .035 | 0.38     | 0.89  |       |
| c1     | .015       | .033 | 0.38     | 0.84  |       |
| D      | .776       | .815 | 19.71    | 20.70 | 4     |
| D1     | .515       | -    | 13.08    | -     | 5     |
| D2     | .020       | .053 | 0.51     | 1.35  |       |
| Ε      | .602       | .625 | 15.29    | 15.87 | 4     |
| E1     | .530       | -    | 13.46    | -     |       |
| E2     | .178       | .216 | 4.52     | 5.49  |       |
| e      | .215       | BSC  | 5.46 BSC |       |       |
| Øk     | .0         | 10   | 0.       | 25    |       |
| L      | .559       | .634 | 14.20    | 16.10 |       |
| L1     | .146       | .169 | 3.71     | 4.29  |       |
| øΡ     | .140       | .144 | 3.56     | 3.66  |       |
| øP1    | -          | .291 | -        | 7.39  |       |
| Q      | .209       | .224 | 5.31     | 5.69  |       |
| S      | .217       | BSC  | 5.51     | BSC   |       |
|        |            |      |          |       | I     |

# LEAD ASSIGNMENTS

<u>HEXFET</u>

- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

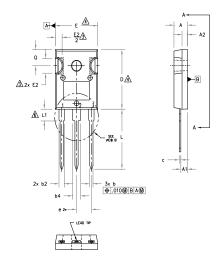

#### IGBTs, CoPACK

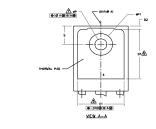
- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

#### DIODES

- 1.- ANODE/OPEN
- 2.- CATHODE 3.- ANODE

TO-247AC Part Marking Information





TO-247AD package is not recommended for Surface Mount Application.



# TO-247AD Package Outline

(Dimensions are shown in millimeters (inches))









#### NOTES:

1, DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

 ${\it o}{\it P}$  to have a Maximum draft angle of 1.5  ${\it '}$  to the top of the part with a Maximum hole DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD.

| SYMBOL | INCHES |      | MILLIM | ETERS |       |
|--------|--------|------|--------|-------|-------|
|        | MIN.   | MAX. | MIN.   | MAX.  | NOTES |
| Α      | .190   | .203 | 4.83   | 5.13  |       |
| A1     | .087   | .102 | 2.21   | 2.59  |       |
| A2     | .059   | .098 | 1.50   | 2.49  |       |
| b      | .039   | .055 | 0.99   | 1.40  |       |
| ь1     | .039   | .053 | 0.99   | 1.35  |       |
| b2     | .065   | .094 | 1.65   | 2.39  |       |
| b3     | .065   | .092 | 1.65   | 2.34  |       |
| b4     | .102   | .135 | 2.59   | 3.43  |       |
| b5     | .102   | .133 | 2.59   | 3.38  |       |
| С      | .015   | .035 | 0.38   | 0.89  |       |
| c1     | .015   | .033 | 0.38   | 0.84  |       |
| D      | .776   | .815 | 19.71  | 20.70 | 4     |
| D1     | .515   | -    | 13.08  | -     | 5     |
| D2     | .020   | .053 | 0.51   | 1.35  |       |
| E      | .602   | .625 | 15.29  | 15.87 | 4     |
| E1     | .530   | -    | 13.46  | -     |       |
| E2     | .178   | .216 | 4.52   | 5.49  |       |
| e      | .215   | BSC  | 5.46   | BSC   |       |
| øk     | .010   |      | 0.     | 25    |       |
| L      | .780   | .827 | 19.57  | 21.00 |       |
| L1     | .146   | .169 | 3.71   | 4.29  |       |
| ØΡ     | .140   | .144 | 3.56   | 3.66  |       |
| øP1    | -      | .291 | -      | 7.39  |       |
| Q      | .209   | .224 | 5.31   | 5.69  |       |
| S      | .217   | BSC  | 5.51   | BSC   |       |
|        |        |      | II.    |       |       |

#### LEAD ASSIGNMENTS

#### **HEXFET**

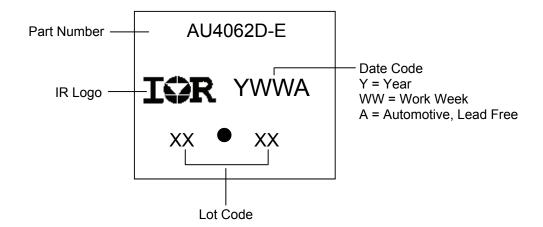
1 - GATE 2.- DRAIN

3.- SOURCE

## IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER


4.- COLLECTOR

#### DIODES

1.- ANODE/OPEN 2.- CATHODE

3.- ANODE

# TO-247AD Part Marking Information



TO-247AD package is not recommended for Surface Mount Application.



#### **Qualification Information**

| Quanneation     |                                 | Automotive<br>(per AEC-Q101)                                                                                                                                        |                                                  |  |  |
|-----------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| Qualification L | _evel                           | This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. |                                                  |  |  |
| Moisture Sens   | sitivity Level                  | TO-247AC N/A                                                                                                                                                        |                                                  |  |  |
|                 | Machine Model  Human Body Model |                                                                                                                                                                     | Class M4(+/- 400V) <sup>†</sup><br>AEC-Q101-002  |  |  |
| ESD             |                                 |                                                                                                                                                                     | Class H2(+/- 2000V) <sup>†</sup><br>AEC-Q101-001 |  |  |
|                 | Charged Device Mode             | Class C5 (+/- 1000V) <sup>†</sup><br>AEC-Q101-005                                                                                                                   |                                                  |  |  |
| RoHS Complia    | oHS Compliant Yes               |                                                                                                                                                                     | Yes                                              |  |  |

<sup>†</sup> Highest passing voltage.

## **Revision History**

| Date      | Comments                                                                                                              |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| 8/24/2017 | <ul> <li>Updated datasheet with corporate template</li> <li>Corrected package outline –TO-247AD on page 11</li> </ul> |  |  |  |
|           | Corrected part marking on pages 10,11                                                                                 |  |  |  |

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

### **IMPORTANT NOTICE**

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

## **WARNINGS**

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

12 2017-08-25