

20-Output PCIe G4 Clock Buffer With On-Chip Termination

Features

- → Supports Intel's DB2000Q pinout
- ➔ 3.3V Supply Voltage
- → HCSL Input: 100MHz (typ), up to 200MHz
- → 20 Differential Low-Power HCSL Outputs with On-Chip Termination
- → Strapping Pins or SMBus for Configuration
- → Very-Low Jitter Outputs
 - Differential additive phase jitter: DB2000Q <30fs RMS
 - Differential additive phase jitter: PCIe Gen4 <30fs RMS
 - Differential additive phase jitter: PCIe Gen5 <20fs RMS
 - PCIe Gen1/Gen2/Gen3/Gen4/Gen5 compliant
- → Differential Output-to-Output Skew <50ps
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

→ Packaging (Pb-free & Green): 72-lead 10mm × 10mm TQFN

Description

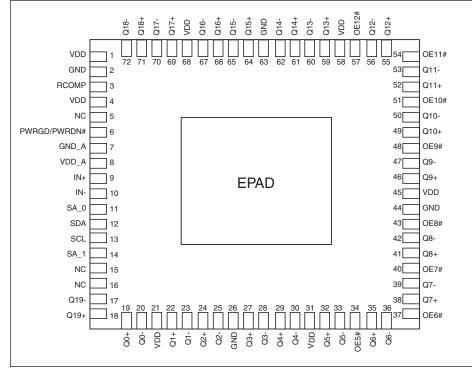
The PI6CB332000 is an 20-output very low-power PCIe clock buffer. It is capable of distributing the reference clocks for UPI, SAS, SATA, and other applications as well. It takes an reference input to fanout 20 100MHz low-power differential HCSL outputs with on-chip terminations. The on-chip termination can save 80 external resistors and make layout easier. 8 OE pins combined with SMBus register pins for controlling each output provides easier power management.

It uses Diodes' proprietary design to achieve very-low jitter that meets PCIe Gen1/Gen2/Gen3/Gen4/Gen5 requirement.

Block Diagram

Notes:

Downloaded from Arrow.com.


2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

Pin Configuration

Pin Description

Pin Number	Pin Name	Ту	ре	Description
1	VDD	Power	_	Power Supply, Nominal 3.3V
2	GND	Power		Connect to Ground
3	RCOMP	Input		Connect 412Ω resistor to this pin. Device functions even if this pin is not connected.
4	VDD	Power		Power Supply, Nominal 3.3V
5	NC	_		No Connect
6	PWRGD/ PWRDN#	Input		Power Good Enable or Power Down Pin. When powered down, outputs are LOW.
7	GND_A	Power		Connect to Ground
8	VDD_A	Power	_	Power Supply, Nominal 3.3V
9	IN+	Input	_	Differential True Clock Input
10	IN-	Input	_	Differential Complementary Clock Input
11	SA_0	Input	_	Address Selection pin, Pulled High
12	SDA	Input/ Output		Open Collector for SMBUS Data
13	SCL	Input	_	SMBUS Slave Clock Input
14	SA_1	Input		Address Selection Pin, Pulled High
15	NC	_		No Connect
16	NC	_		No Connect

Pin Description Cont.

Pin Number	Pin Name	Ту	ре	Description
17	Q19-	Output	HCSL	Differential Complementary Clock Output
18	Q19+	Output	HCSL	Differential True Clock Output
19	Q0+	Output	HCSL	Differential True Clock Output
20	Q0-	Output	HCSL	Differential Complementary Clock Output
21	V _{DD}	Power		Power Supply, Nominal 3.3V
22	Q1+	Output	HCSL	Differential True Clock Output
23	Q1-	Output	HCSL	Differential Complementary Clock Output
24	Q2+	Output	HCSL	Differential True Clock Output
25	Q2-	Output	HCSL	Differential Complementary Clock Output
26	GND	Power		Ground
27	Q3+	Output	HCSL	Differential True Clock Output
28	Q3-	Output	HCSL	Differential Complementary Clock Output
29	Q4+	Output	HCSL	Differential True Clock Output
30	Q4-	Output	HCSL	Differential Complementary Clock Output
31	VDD	Power		Power Supply, Nominal 3.3V
32	Q5+	Output	HCSL	Differential True Clock Output
33	Q5-	Output	HCSL	Differential Complementary Clock Output
34	OE5#	Input	CMOS	Active Low Input for Enabling Q5 Pair. 1 =disable outputs, 0 = enable outputs
35	Q6+	Output	HCSL	Differential True Clock Output
36	Q6-	Output	HCSL	Differential Complementary Clock Output
37	OE6#	Input	CMOS	Active Low Input for Enabling Q6 Pair. 1 =disable outputs, 0 = enable outputs
38	Q7+	Output	HCSL	Differential True Clock Output
39	Q7-	Output	HCSL	Differential Complementary Clock Output
40	OE7#	Input	CMOS	Active Low Input for Enabling Q7 Pair. 1 =disable outputs, 0 = enable outputs
41	Q8+	Output	HCSL	Differential True Clock Output
42	Q8-	Output	HCSL	Differential Complementary Clock Output
43	OE8#	Input	CMOS	Active Low Input for Enabling Q8 Pair. 1 =disable outputs, 0 = enable outputs
44	GND	Power	_	Ground
45	V _{DD}	Power	_	Power Supply, Nominal 3.3V
46	Q9+	Output	HCSL	Differential True Clock Output
47	Q9-	Output	HCSL	Differential Complementary Clock Output
48	OE9#	Input	CMOS	Active Low Input for Enabling Q9 Pair. 1 =disable outputs, 0 = enable outputs

Pin Description Cont.

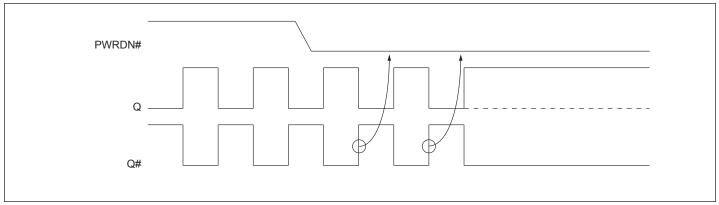
Pin Number	Pin Name	Ту	pe	Description
49	Q10+	Output	HCSL	Differential True Clock Output
50	Q10-	Output	HCSL	Differential Complementary Clock Output
51	OE10#	Input	CMOS	Active Low Input for Enabling Q10 Pair. 1 =disable outputs, 0 = enable outputs
52	Q11+	Output	HCSL	Differential True Clock Output
53	Q11-	Output	HCSL	Differential Complementary Clock Output
54	OE11#	Input	CMOS	Active Low Input for Enabling Q11 Pair. 1 =disable outputs, 0 = enable outputs
55	Q12+	Output	HCSL	Differential True Clock Output
56	Q12-	Output	HCSL	Differential Complementary Clock Output
57	OE12#	Input	CMOS	Active Low Input for Enabling Q12 Pair. 1 =disable outputs, 0 = enable outputs
58	VDD	Power		Power Supply, Nominal 3.3V
59	Q13+	Output	HCSL	Differential True Clock Output
60	Q13-	Output	HCSL	Differential Complementary Clock Output
61	Q14+	Output	HCSL	Differential True Clock Output
62	Q14-	Output	HCSL	Differential Complementary Clock Output
63	GND	Power	_	Ground
64	Q15+	Output	HCSL	Differential True Clock Output
65	Q15-	Output	HCSL	Differential Complementary Clock Output
66	Q16+	Output	HCSL	Differential True Clock Output
67	Q16-	Output	HCSL	Differential Complementary Clock Output
68	VDD	Power		Power Supply, Nominal 3.3V
69	Q17+	Output	HCSL	Differential True Clock Output
70	Q17-	Output	HCSL	Differential Complementary Clock Output
71	Q18+	Output	HCSL	Differential True Clock Output
72	Q18-	Output	HCSL	Differential Complementary Clock Output
_	EPAD	Power	_	Connect to Ground

SMBus Address Selection Table

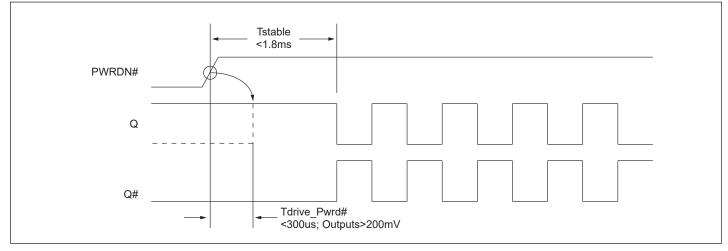
SA_0	Address
L	D8
М	DA
Н	DE
L	C2
М	C4
Н	C6
L	CA
М	CC
Н	CE
	L M H L M H L L M

Power Management Table

PWRGD/PWRDN#	Q+	Q-
0	Low	Low
1	Normal	Normal


OE Functionality

Inj	puts	OE# Hardware Pins and Control Register Bits					
PWRGD/ PWRDN# IN+/IN-		SMBUS Enable Bit	OE# Pin	Q+/Q- [12:5]	Q+/Q- [18:13], [4:0]		
0	Х	X	Х	Low/Low	Low/Low		
		0	Х	Low/Low	Low/Low		
1	Running	1	0	Running	Running		
		1	1	Low/Low	Running		



PWRDN# Assertion

PWRGD Assertion

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature–65°C to +150°C	2
Supply Voltage to Ground Potential, VDDxx0.5V to +4.0V	r
Input Control Pins Voltage –0.5V to V _{DD} +0.5V CLK+/- pins0.5V to 2.5V	
SMBus, Input High Voltage 3.6V	7
ESD Protection (HBM)	r
Junction Temperature	х

Note:

 $Stresses\,greater\,than\,those listed\,under\,MAXIMUM\,RATINGS$ may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{DD} , V _{DD_A}	Power Supply Voltage	—	3.135	3.3	3.465	V
I _{DD}	Power Supply Current	V _{DD} + V _{DDA} , All outputs active @ 100MHz	_	210	250	mA
I _{DD_PD}	Power Supply Power Down ⁽¹⁾ Current	V _{DD} + V _{DDA} , All outputs LOW/ LOW		1.8	3.0	mA
T _A	Ambient Temperature	Industrial grade	-40	—	85	°C

Note:

1. Input clock is not running.

Input Electrical Characteristics

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
R _{pu}	Internal Pull-Up Resistance	—		120		KΩ
R _{dn}	Internal Pull-Down Resistance	_	_	120		KΩ
L _{PIN}	Pin Inductance	_	—	—	7	nH

SMBus Electrical Characteristics

Temperature = T_A . Supply voltages per normal operation conditions. See test circuits for load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{DDSMB}	Nominal Bus Voltage	—	2.7	_	3.6	V
		SMBus, $V_{DDSMB} = 3.3V$	2.1		3.6	
V _{IHSMB}	SMBus Input High Voltage	SMBus, V _{DDSMB} < 3.3V	0.65 V _{DDSMB}	_	_	V
3.7	SMBus Input Low Voltage	SMBus, $V_{DDSMB} = 3.3V$			0.6	V
V _{ILSMB}		SMBus, V _{DDSMB} < 3.3V			0.6	
I _{SMBSINK}	SMBus Sink Current	SMBus, at V _{OLSMB}	4		_	mA
Volsmb	SMBus Output Low Voltage	SMBus, at I _{SMBSINK}	—		0.4	V
f _{MAXSMB}	SMBus Operating Frequency	Maximum frequency	_	_	400	kHz
t _{RMSB}	SMBus Rise Time	(Max $\mathrm{V_{IL}}$ - 0.15) to (Min $\mathrm{V_{IH}}$ + 0.15)	_		1000	ns
t _{FMSB}	SMBus Fall Time	(Min $\mathrm{V_{IH}}$ + 0.15) to (Max $\mathrm{V_{IL}}$ - 0.15)	—	_	300	ns

LVCMOS DC Electrical Characteristics

Temperature = T_A. Supply voltages per normal operation conditions. See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input High Voltage	Single-ended inputs except trilevel pins	2	_	V _{DD} +0.3	V
V _{IL}	Input Low Voltage	Single-ended inputs except trilevel pins	-0.3	_	0.8	V
V _{IH}	Input High Voltage	Single-ended trilevel inputs	2.4	_	V _{DD} +0.3	V
V _{IM}	Input Mid Voltage	Single-ended trilevel inputs	1.2	$0.5 V_{DD}$	1.8	V
V _{IL}	Input Low Voltage	Single-ended trilevel inputs	-0.3	_	0.9	V
I _{IH}	Input High Current	Single-ended inputs, $V_{IN} = V_{DD}$		_	5	μΑ
I _{IL}	Input Low Current	Single-ended inputs, $V_{IN} = 0V$	-5	_	_	μΑ
I _{IH}	Input High Current	Single-ended inputs with pull-up resistor, $V_{IN} = V_{DD}$	_	_	5	μΑ
I _{IL}	Input Low Current	Single-ended inputs with pull-up resistor, $V_{\rm IN}$ = 0V	-50		_	μΑ
C _{IN}	Input Capacitance	—	1.5	_	5	pF
t _{RF}	Rise/ Fall Time of Input	—	_	_	5	ns

LVCMOS AC Electrical Characteristics

Temperature = T_A. Supply voltages per normal operation conditions. See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
t _{OELAT}	Output Enable Latency	Q start after OE# assertion Q stop after OE# deassertion	1	6	10	clocks
t _{PDLAT}	PD# Deassertion	Differential outputs enable after PD# deassertion	_	200	300	μs

HCSL Input Characteristics⁽¹⁾

Temperature = T_A. Supply voltages per normal operation conditions. See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input Frequency	_	1	100	200	MHz
V _{IHDIF}	Diff. Input High Voltage ⁽³⁾	IN+, IN-, single-ended measurement	330	_	1150	mV
V _{ILDIF}	Diff. Input Low Voltage ⁽³⁾	IN+, IN-, single-ended measurement	-300	0	300	mV
V _{SWING}	Diff. Input Swing Voltage	Peak-to-peak value (V _{IHDIF} - V _{ILDIF)}	200	_		mV
V _{COM}	Common Mode Voltage	_	0	_	900	mV
t _{RF}	Diff. Input Slew Rate ⁽²⁾	_	0.7	_	_	V/ns
I _{IN}	Diff. Input Leakage Current	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	_	5	μΑ
t _{DC}	Diff. Input Duty Cycle	Measured differentially	45		55	%
tj _{c-c}	Diff. Input Cycle-to-Cycle Jitter	Measured differentially			125	ps

Note:

1. Guaranteed by design and characterization—not 100% tested in production.

2. Slew rate measured through ±75mV window centered around differential zero.

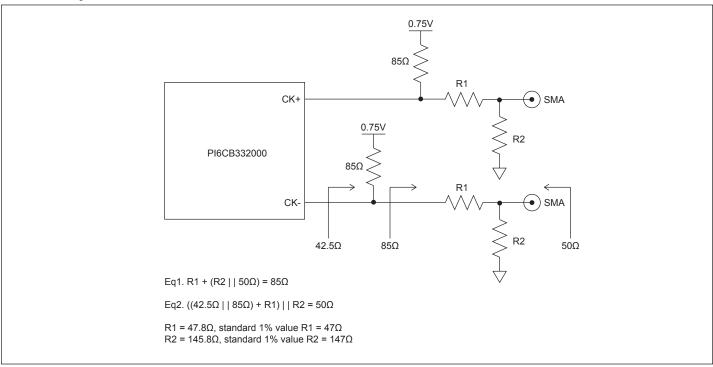
3. The device can be driven by a single-ended clock by driving the true clock and biasing the complement clock input to the Vbias, where Vbias is (VIH-VIL)/2.

Downloaded from Arrow.com.

HCSL Output DC Characteristics

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
V _{OH}	Output Voltage High (1)		225		270	mV
V _{OL}	Output Voltage Low (1)		10	0	150	mV
V _{OMAX}	Output Voltage Maximum (Overshoot) ⁽¹⁾				V _{OH} + 75mV	mV
V _{OMIN}	Output Voltage Minimum (Undershoot) (1)		V _{OL} + 75mV			mV
Vcross absolute	Absolute Crossing Point Voltage (1,2)		130		200	mV
Vcross relative	Relative Crossing Point Voltage ^(1,2)				35	mV
DC Distor- tion	Duty Cycle Distortion ^(3,4)		-1		1	%


Note:

1. At default SMBUS amplitude settings.

2. Guaranteed by design and characterization—not 100% tested in production.

3. Measured from differential waveform.

4. Duty cycle distortion is the difference in duty cycle between the out and input clock when the device is operated in the PLL bypass mode.

HCSL Output DC Test Load

HCSL Output AC Characteristics

Temperature = T_A ; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
f _{OUT}	Output Frequency			100	200	MHz
t _{RF}	Slew Rate (1,2,3)	Scope averaging on, 10in trace	1.5	3.0	4	V/ns
Dt _{RF}	Slew Rate Matching (1,2,4)	Scope averaging on, 10in trace			20	%
t _{SKEW}	Output Skew (1,2)	Averaging on, $V_T = 50\%$			50	ps
V _{MAX}	Maximum Output Voltage	Measurement on single ended signal us-	660	780	850	mV
V _{MIN}	Minimum Output Voltage	ing absolute value	-150	20	150	mV
tj _{c-c}	Additive Cycle-to-Cycle Jitter ^(1,2)			0	0.05	ps
T _{pd}	Propagation Delay			1.5	2	ns

PCIe Common Clock (CC) Architecture Jitter

Symbol	Parameters	Condition	Min.	Тур.	Max.	Spec Limit	Units
		PCIe Gen 1 ⁽⁶⁾	_	0	0.03	86	ps (pkpk)
		PCIe Gen 2 Low Band, 10kHz < f < 1.5MHz (PLL BW 5-16MHz or 8-5MHz, CDR = 10MHz)		0	0.03	3	ps
		PCIe Gen 2 High Band, 1.5MHz < f < Nyquist (50MHz); (PLL BW 5-16MHz or 8-5MHz, CDR = 10MHz)	_	0	0.03	3.1	ps
t _{jPHASE}	Additive Integrated Phase	PCIe Gen 3 (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)		0	0.03	1	ps
	Jitter (RMS) ^(1,2,7,8)	PCIe Gen 4 (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)		0	0.03	0.5	ps
		PCIe Gen 5 (PLL BW of 500k to 1.8MHz. CDR =20MHz) ⁽⁹⁾		0.07	0.12	0.15	ps
		100MHz (12kHz to 20MHz), input jitter ~156fs	_	87	120	NA ⁽¹⁰⁾	fs
		156.25MHz (12kHz to 20MHz), input jitter ~110fs		47	100	NA ⁽¹⁰⁾	fs
		100MHz, apply DB2000Q filter, see figure 5			25	80	fs

Note:

1. Guaranteed by design and characterization-not 100% tested in production.

2. Measured from differential waveform.

3. Slew rate is measured through the Vswing voltage range centered around differential 0V within ±150mV window.

4. Slew rate matching is measured through ±75mV window centered around differential zero.

5. See http://www.pcisig.com for complete specifications.

7. Applies to all differential outputs.

9. PCIe Gen 5 v0.9 specification

10. Not available.

PI6CB332000 Document Number DS41283 Rev 5-2

^{6.} Sample size of at least 100k cycles. This can be extrapolated to 108ps pk-pk @ 1M cycles for a BER of 10^{-12} .

^{8.} For additive jitter RMS value is calculated by the following equation = SQRT [$(total jitter)^{*2}$ - $(input jitter)^{*2}$].

PCIe Independent Reference Clock Architecture Jitter

Symbol	Parameters	Condition	Min.	Typ.	Max.	Spec Limit	Units
	T utumeters	Conuction		-7P*	1/14/10	Linne	CIIICO
		PCIe Gen 3 SRIS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)		0	0.03	0.7	ps
t _{jPHASE}	Additive Integrated Phase Jitter (RMS)	PCIe Gen 4 SRIS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)		0	0.03	0.7	ps
		PCIe Gen 4 SRNS (PLL BW 2-4MHz or 2-5MHz, CDR= 10MHz)	_	0	0.03	0.7	ps

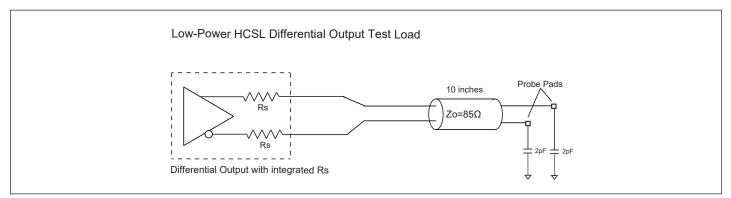


Figure 1. Low Power HCSLAC Test Circuit

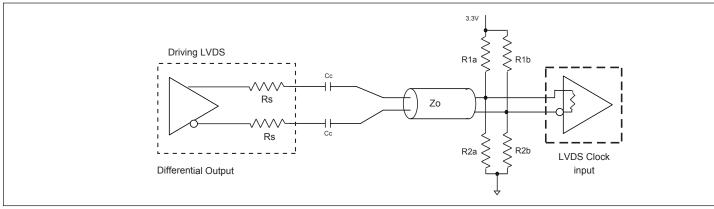
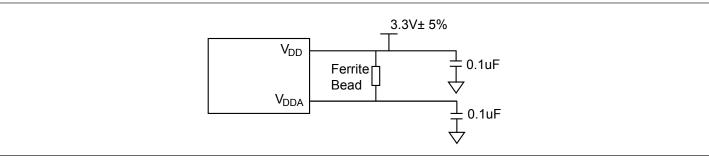
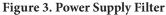




Figure 2. Differential Output Driving LVDS

Differential Output Terminations Driving LVDS ($Z_0 = 100\Omega$)

Component	Receiver with termination	Receiver without termination	Unit
R_{1a}, R_{1b}	10,000	140	Ω
R _{2a} , R _{2b}	5600	75	Ω
C _C	0.1	0.1	μF
V _{CM}	1.2	1.2	V

SMBus Serial Data Interface

PI6CB332000 is a slave only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	See SMBus Ad	dress Selection '	Table	1/0

Note: SMBus address is latched on SADR pin.

How to Write

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	1 bit
Start Bit	Add.	W(0)	Ack	Beginning Byte Location = N	Ack	Data Byte Count = X	Ack	Beginning Data Byte (N)	Ack	 Data Byte (N+X-1)	Ack	Stop Bit

How to Read

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit
Start bit	Address	W(0)	Ack	Beginning Byte Location = N	Ack	Repeat Start Bit	Address	R(1)	Ack	Data Byte Count = X	Ack	Beginning Data Byte (N)	Ack

8 bits	1 bit	1 bit
Data Byte	NAck	Stop Bit
(N+X-1)	INACK	Stop Bit

Downloaded from Arrow.com.

Byte 0: Output Enable Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Reserved	—		1	_	_
6	Q19_OE	Q19 Output Enable	RW	1	Low	Enable
5	Q18_OE	Q18 Output Enable	RW	1	Low	Enable
4	Q17_OE	Q17 Output Enable	RW	1	Low	Enable
3	Q16_OE	Q16 Output Enable	RW	1	Low	Enable
2	Reserved	_	_	0	_	_
1	Reserved	_	_	0	_	_
0	Reserved	—	_	1	_	_

Byte 1: Output Enable Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Q7_OE	Q7 Output Enable	RW	1	Low	Enable
6	Q6_OE	Q6 Output Enable	RW	1	Low	Enable
5	Q5_OE	Q5 Output Enable	RW	1	Low	Enable
4	Q4_OE	Q4 Output Enable	RW	1	Low	Enable
3	Q3_OE	Q3 Output Enable	RW	1	Low	Enable
2	Q2_OE	Q2 Output Enable	RW	1	Low	Enable
1	Q1_OE	Q1 Output Enable	RW	1	Low	Enable
0	Q0_OE	Q0 Output Enable	RW	1	Low	Enable

Byte 2: Output Enable Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Q15_OE	Q15 Output Enable	RW	1	Low	Enable
6	Q14_OE	Q14 Output Enable	RW	1	Low	Enable
5	Q13_OE	Q13 Output Enable	RW	1	Low	Enable
4	Q12_OE	Q12 Output Enable	RW	1	Low	Enable
3	Q11_OE	Q11 Output Enable	RW	1	Low	Enable
2	Q10_OE	Q10 Output Enable	RW	1	Low	Enable
1	Q9_OE	Q9 Output Enable	RW	1	Low	Enable
0	Q8_OE	Q8 Output Enable	RW	1	Low	Enable

Byte 3: OE# Pin Realtime Readback Control Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	OE12#	Realtime Readback of OE12#	R	Realtime	OE12# = Low	OE12# = High
6	OE11#	Realtime Readback of OE11#	R	Realtime	OE11# = Low	OE11# = High
5	OE10#	Realtime Readback of OE10#	R	Realtime	OE10# = Low	OE10# = High
4	OE9#	Realtime Readback of OE9#	R	Realtime	OE9# = Low	OE9# = High
3	OE8#	Realtime Readback of OE8#	R	Realtime	OE8# = Low	OE8# = High
2	OE7#	Realtime Readback of OE7#	R	Realtime	OE7# = Low	OE7# = High
1	OE6#	Realtime Readback of OE6#	R	Realtime	OE6# = Low	OE6# = High
0	OE5#	Realtime Readback of OE5#	R	Realtime	OE5# = Low	OE5# = High

Note:

1. B1[5] must be set to 1 for these bits to have any effect on the part.

Byte 4: Reserved

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7:0	Reserved	_	—	0	—	_

Byte 5: Revision and Vendor ID Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1	
7	RID3	Revision ID	R	0			
6	RID2		R	0			
5	RID1	Revision ID	R	0	rev = 0000		
4	RID0		R	0			
3	PVID3		R	0			
2	PVID3		R	0	D . 0011		
1	PVID3	Vendor ID	R	1	Pericom = 0011		
0	PVID3		R	1			

Byte 6: Device Type/Device ID Register

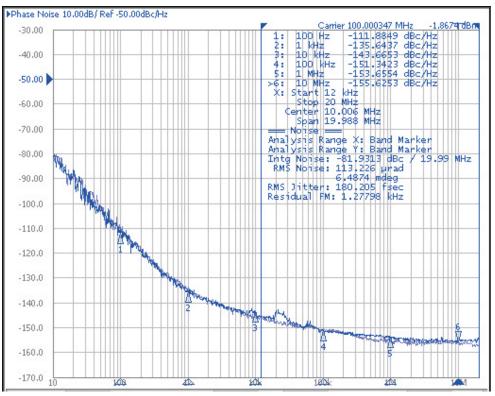
Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	DID7		R	0		
6	DID6		R	1		
5	DID5	Device ID I	R	0		
4	DID4		R	0		
3	DID3		R	1		
2	DID2		R	0		
1	DID1		R	0		
0	DID0		R	0		

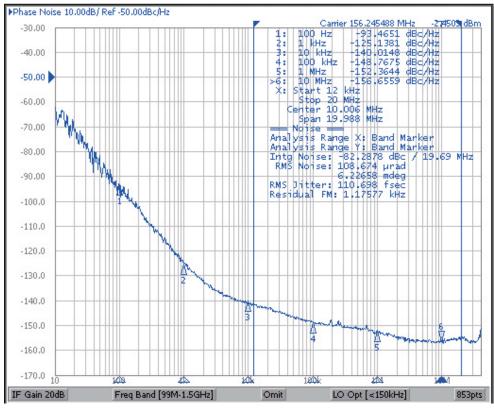
Byte 7: Byte Count Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Reserved	—	_	0	—	_
6	Reserved	_	_	0	_	_
5	Reserved	—	_	0	_	_
4	BC4		RW	0		
3	BC3	-	RW	1	Writing to this	register
2	BC2	Byte Count Programming	RW	0	configures how	many bytes are
1	BC1		RW	0	read back; defa	ult is 8 bytes
0	BC0		RW	0		

Byte 8: Vendor Specific

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7:0	Reserved	_	—	0	_	_


Downloaded from Arrow.com.



Phase Noise Plots

100MHz input phase noise vs output phase noise. Additive jitter 87fs.

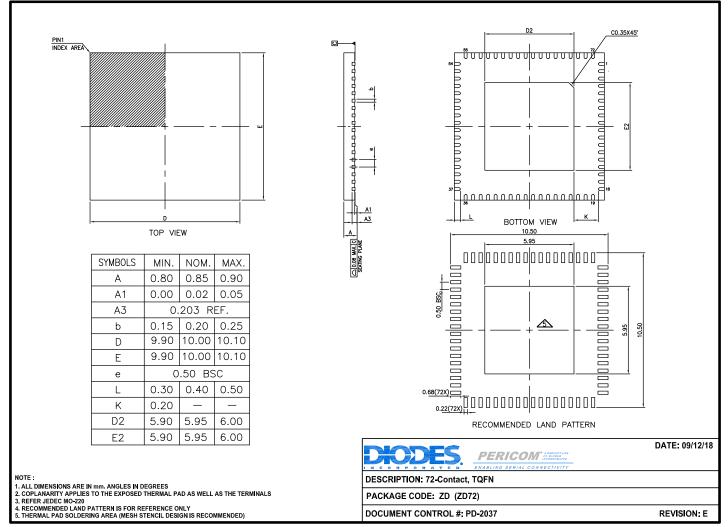
Achievable output phase noise at 156.25MHz

PI6CB332000 Document Number DS41283 Rev 5-2

Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
θ_{JA}	Thermal Resistance Junction to Ambient	Still air			25.85	°C/W
θ_{JC}	Thermal Resistance Junction to Case				12.55	°C/W

Part Marking



YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 72-TQFN (ZD)

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6CB332000ZDIEX	ZD	72-Contact (TQFN)	Industrial

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

Downloaded from Arrow.com.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com