

HALF-BRIDGE IGBT MODULE

600V, 450A

Product Summary

Part Number	V _{CE}	Ic	V _{CE(SAT)}	
GHP500HHBK06P2	600V	450A	1.8V	

Description

The IR HiRel INT-A-Pak Series are isolated near hermetic power modules which combine the latest IGBT and Soft Recovery Rectifier Technology. The module uses both high-speed and low $V_{\text{CE}(\text{SAT})}$ IGBT's of ultra low thermal resistance junction to case. The G450HHBK06P2 power module consists of six IGBTs and six FREDs in a Phase-Leg or Half-Bridge configuration.

Features

- Rugged, Lightweight near Hermetic Package with Integrated Power Terminal Cap
- Gen 4 IGBT Technology
- · Soft Recovery Rectifiers
- AISiC Baseplate and AIN Substrate
- Ultra Low Thermal Resistance
- Zener Gate Protection
- Very Low Conduction and Switching Loss
- -55°C to +125°C Operating Temperature
- Screening to meet the intent of MIL-PRF-38534 Class H
- Short Circuit Capability
- 2 Ohms Series Gate Resistance
- High Altitude Operation, 85,000 Feet above Sea Level at Rated Voltage

Absolute Maximum Ratings @ T_J = 25°C (unless otherwise specified)

Parameter	Symbol	Value	Units	
Collector-to-Emitter Voltage	V _{CES}	600	V	
Gate-to-Emitter Voltage	V_{GE}	±20		
Continuous Collector Current @ T _C = 25°C		600		
Continuous Collector Current @ T _C = 70°C	I _C	450	А	
Isolation Voltage	V _{ISOL}	2500	V _{RMS}	

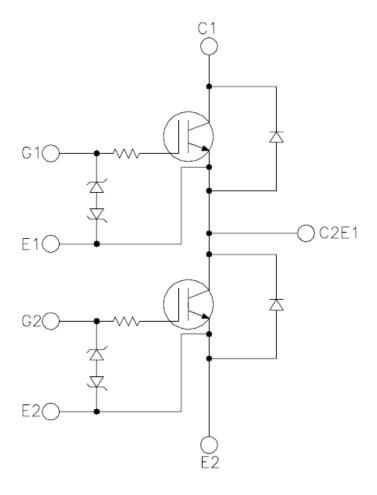
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Parameter	Symbol	Test Conditions		Тур.	Max.	Units
Off Characteristics						
Collector Emitter Breakdown Voltage	V_{CES}	V _{GE} = 0V	600			V
Zero Gate Voltage Collector Current	I _{CES}	V _{GE} = 0V, V _{CE} = 600V			2.0	mA
Gate Emitter Leakage Current	I _{GES}	V _{GE} = ±15V, V _{CE} = 0V			10	μA
On Characteristics						
Gate Threshold Voltage	V _{GE(TH)}	$V_{CE} = V_{GE}$, $I_C = 45$ mA	4.0		7.5	V
Collector Emitter Saturation Voltage	V _{CE(SAT)}	V _{GE} = 15V, I _C = 450A		1.8	2.6	V
Dynamic Characteristics						
Total Gate Charge	Q_{G}	$V_{CE} = 300V, I_C = 450A, V_{GE} = 15V$		2600		nC
Input Capacitance	C _{IES}			48		
Output Capacitance	C _{OES}	$V_{GE} = 0V, V_{CE} = 25V, f = 1.0MHz$		3.0		nF
Reverse Transfer Capacitance	C _{RES}			0.3		
Switching Inductive Load Char	acteristic	s				
Turn-On Delay Time	t _{d(on)}			500	900	
Rise Time	tr			280	700	ns
Turn-On Losses	E _{on}	V_{CC} = 300V, I_{C} = 450A, V_{GE} = +15V		20		mJ
Turn-Off Delay Time	t _{d(off)}	$R_{G(on)} = 5\Omega$, $R_{G(off)} = 10\Omega$, L = 200 μ H		2600	3400	
Fall Time	tf			500	650	ns
Turn-Off Losses	E _{off}			60		mJ
Diode Characteristics						
Forward Voltage	V _F	I _F = 450A		1.2	1.8	V
Reverse Recovery Charge	Q_{rr}			15	36	μC
Peak Reverse Recovery Current	I _{rr}	$V_R = 300V$, $I_F = 450A$, $di/dt = -1800A/\mu s$		160		Α
Reveres Recovery Time	t _{rr}			180	260	ns

Electrical Characteristics @ T_J = 125°C (unless otherwise specified)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units	
Off Characteristics	Off Characteristics						
Collector Emitter Breakdown Voltage	V _{CES}	$V_{GE} = 0V$	600			V	
Zero Gate Voltage Collector Current	I _{CES}	V _{GE} = 0V, V _{CE} = 600V			18	mA	
Gate Emitter Leakage Current	I _{GES}	V _{GE} = ±15V, V _{CE} = 0V			10	μΑ	
On Characteristics							
Gate Threshold Voltage	V _{GE(TH)}	$V_{CE} = V_{GE}$, $I_C = 45$ mA	4.0		7.5	V	
Collector Emitter Saturation Voltage	V _{CE(SAT)}	V _{GE} = 15V, I _C = 450A		1.8	2.6	V	
Diode Characteristics							
Forward Voltage	V _F	I _F = 450A		1.2	1.8	V	

Thermal-Mechanical Specifications


Parameter		Min.	Тур.	Max.	Units
IGBT Thermal Resistance, Junction-to-Case, per Switch	В		0.05	0.07	°C/\\
Diode Thermal Resistance, Junction-to-Case, per Switch	R_{thJC}		0.10	0.13	°C/W
Operating Junction Temperature Range		-55		150	00
Storage Temperature Range	T _{STG}	-55		125	°C
Screw Torque - Mounting				26	in-lbs
Screw Torque - Terminals	I			20	111-105
Module Weight				270	g

Module Screening

Test or Inspection	est or Inspection MIL-PRF-883		Comments		
	Method	Condition			
Internal Visual	2017				
Temperature Cycle	1010	В	10 Cycles, -55°C to +125°C		
Mechanical Shock	2002	В	1500G, 0.5ms, 5 Times (Y1 direction only)		
Burn-in	1015	Α	160 Hrs @ +125°C		
Final Electrical Test			Group A, -55°C, +25°C, +125°C		
External Visual	2009				

Schematic

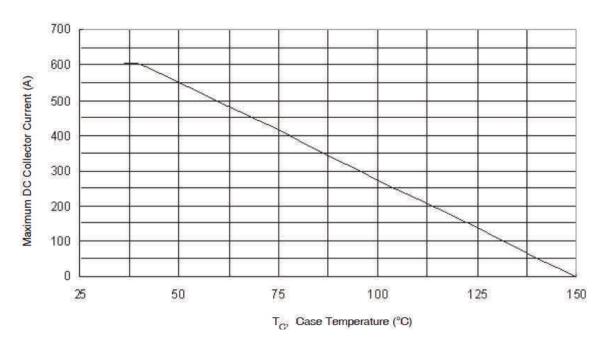


Fig 1. Maximum Collector Current Vs Case Temperature

4

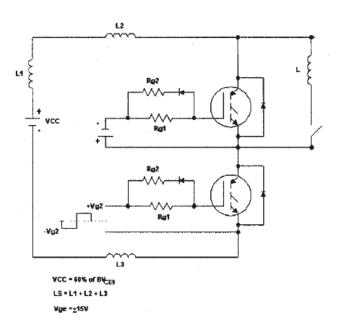


Fig 2. Test Circuit for Measurement of Eon, Eoff, trr, Qrr, Irr, td(on), tr, td(off), tf

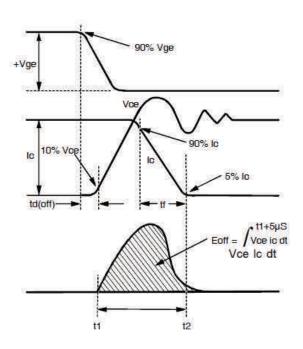
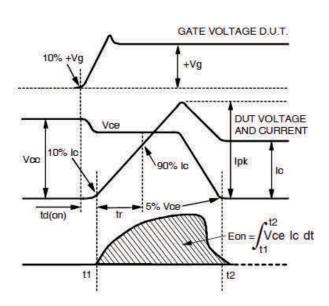
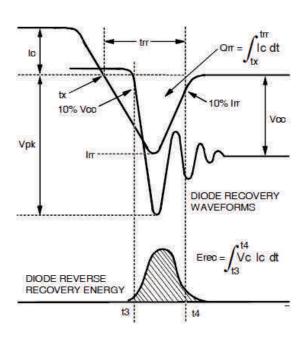
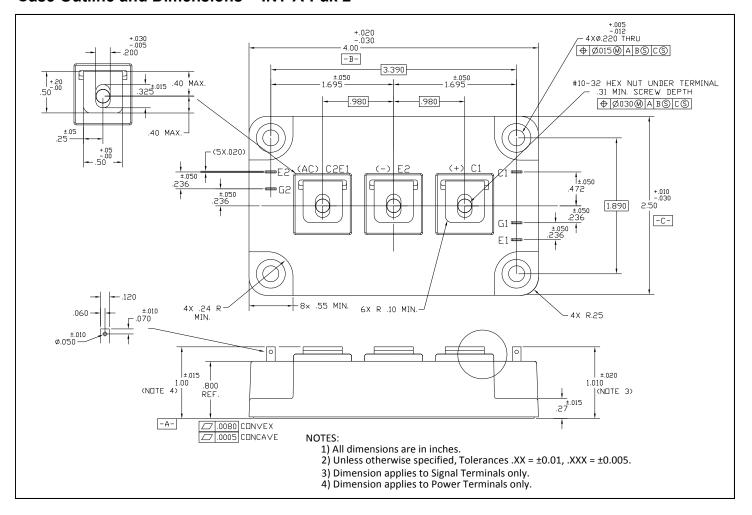
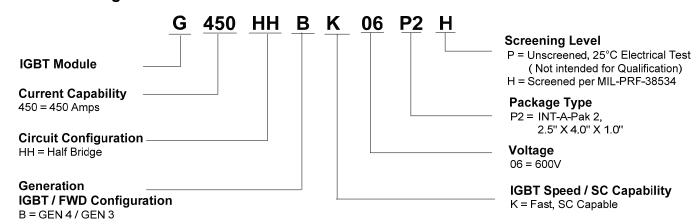



Fig 3. Test Waveforms for Circuit of Fig 2
Defining Eoff, td(off), tf

Fig 4. Test Waveforms for Circuit of **Fig 2**Defining Eon, td(on), tr


Fig 5. Test Waveforms for Circuit of Fig 2
Defining Erec, trr, Qrr, Irr

Case Outline and Dimensions - INT-A-Pak 2

Part Numbering Nomenclature

An Infineon Technologies Company

IR HiRel Headquarters: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
IR HiRel Leominster: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
IR HiRel San Jose: 2520 Junction Avenue, San Jose, California 95134, USA Tel: (408) 434-5000
Data and specifications subject to change without notice.

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.