

INSULATED GATE BIPOLAR TRANSISTOR

$$V_{CES} = 1200V$$

$$I_{C(Nominal)} = 15A$$

$$T_{J(max)} = 175^{\circ}C$$

$$V_{CE(on)} typ = 1.9V @ I_{C} = 15A$$

G C E Gate Collector Emitter

Applications

- Medium Power Drives
- UPS
- HEV Inverter
- Welding

Features	Benefits			
Low V and switching losses	High efficiency in a wide range of applications			
Low V _{CE(ON)} and switching losses	and switching frequencies			
Square DDCOA and Maximum Junatian Tamparature 175°C	Improved reliability due to rugged hard switching			
Square RBSOA and Maximum Junction Temperature 175°C	performance and higher power capability			
Positive V _{CE (ON)} Temperature Coefficient	Excellent current sharing in parallel operation			

Base part number	Package Type	Standa	rd Pack	Orderable part number
		Form	Quantity	
IRG7CH37K10EF	Die on Film	Wafer	1	IRG7CH37K10EF

Mechanical Parameter

Die Size	4.763 x 4.763	mm ²			
Minimum Street Width	75	μm			
Emiter Pad Size (Included Gate Pad)	See Die Drawing	mm ²			
Gate Pad Size	1.0053 x 0.7035				
Area Total / Active	22.69 / 12				
Thickness	140	μm			
Wafer Size	200	mm			
Notch Position	0	Degrees			
Maximum-Possible Chips per Wafer	1206 pcs.				
Passivation Front side	Silicon Nitride				
Front Metal	Al, Si (4µm)	Al, Si (4μm)			
Backside Metal	Al (1kA°), Ti (1kA°), Ni (4kA°), Ag (6kA°)				
Die Bond	Electrically conductive epoxy or solder				
Reject Ink Dot Size	0.25 mm diameter minimum				

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, T _J =25°C	1200	V
Ic	DC Collector Current	0	Α
I_{LM}	Clamped Inductive Load Current @	60	Α
$V_{\sf GE}$	Gate Emitter Voltage	± 30	V
T_J , T_{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) @ T_J=25°C

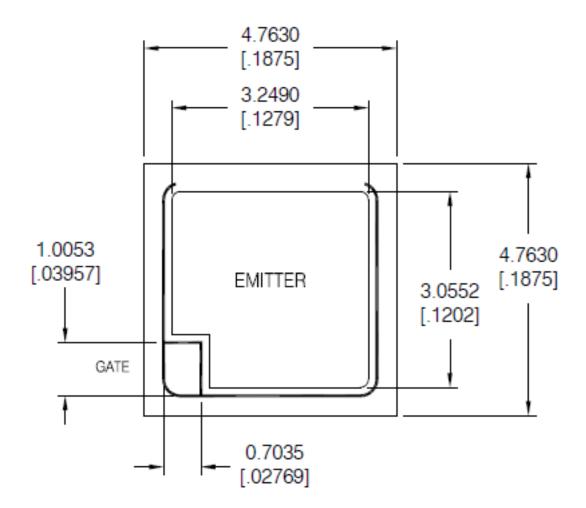
	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	1200			V	V _{GE} = 0V, I _C = 250μA ⑤
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.9	2.3		$V_{GE} = 15V, I_{C} = 10A, T_{J} = 25^{\circ}C$
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	5.0		7.5		$I_C = 720\mu A$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μΑ	V _{CE} = 1200V, V _{GE} = 0V
I_{GES}	Gate Emitter Leakage Current			±100	nA	$V_{CE} = 0V, V_{GE} = \pm 30V$

Electrical Characteristics (Not subject to production test-verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.9	2.3	V	$V_{GE} = 15V, I_{C} = 15A, T_{J} = 25^{\circ}C$
			2.5			$V_{GE} = 15V, I_{C} = 15A, T_{J} = 175^{\circ}C$
SCSOA	Short Circuit Safe Operating Area	10			μs	V _{GE} = 15V, V _{CC} = 600V ②
						$R_G = 10\Omega, V_P \le 1200V, T_J \le 150^{\circ}C$
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE				$T_J = 175^{\circ}C, I_C = 60A$
						$V_{CC} = 960V, Vp \le 1200V$
						Rg = 10Ω , V_{GE} = +20V to 0V
C _{iss}	Input Capacitance		1950		pF	$V_{GE} = 0V$
Coss	Output Capacitance		77			V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		46			f = 1.0MHz
Q_g	Total Gate Charge (turn-on)	_	80	_	nC	I _C = 100A ⑥
$\overline{Q_ge}$	Gate-to-Emitter Charge (turn-on)	_	21	_		V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)		38	_		V _{CC} = 600V

Switching Characteristics (Inductive Load-Not subject to production test-verified by design/characterization)

•	mining characterionics (made not be business to production tool vermously decign, characterization,						
	Parameter	Min.	Тур.	Max.	Units	Conditions ③	
t _{d(on)}	Turn-On delay time	-	28	_		I _C = 15A, V _{CC} = 600V	
t _r	Rise time	_	27	_		$R_G = 10\Omega$, $V_{GE} = 15V$, $L = 260\mu H$	
t _{d(off)}	Turn-Off delay time	_	122	_		T _J = 25°C	
t _f	Fall time	_	105	_			
t _{d(on)}	Turn-On delay time	_	26	_	ns	I _C = 15A, V _{CC} = 600V	
t _r	Rise time	_	26	_		$R_G = 10\Omega$, $V_{GE} = 15V$, $L = 260\mu H$	
t _{d(off)}	Turn-Off delay time		154	_		T _J = 175°C	
t _f	Fall time	_	272	_			


Notes

- ① The current in the application is limited by T_{JMax} and the thermal properties of the assembly.
- ② Not subject to production test-verified by design / characterization.
- ③ Values influenced by parasitic L and C in measurement.

- © Die level characterization.

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WIDTH AND LENGTH TOLERANCE: -0.0508 [.002]
- 4. DIE THICKNESS = 0.140 [.0055]

REFERENCE: IRG7CH37K10B

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the
 assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office or email your inquiry to http://die.irf.com

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/