

INSULATED GATE BIPOLAR TRANSISTOR

Features

- Low V_{CE (ON)} Trench IGBT Technology
- Low Switching Losses
- Maximum Junction Temperature 175 °C
- Short Circuit Rated
- Square RBSOA
- Positive V_{CE (ON)} Temperature Coefficient
- Tight Parameter Distribution

G	С	E	
Gate	Collector	Emitter	

Benefits

- High Efficiency in a Wide Range of Applications
- Suitable for a Wide Range of Switching Frequencies due to Low V_{CE (ON)} and Low Switching Losses
- Rugged Transient Performance for Increased Reliability
- Excellent Current Sharing in Parallel Operation

Applications

- UPS
- HEV Inverters
- Welding

Page port number	Dookogo Tymo	Standard Pack		Ordereble next number
Base part number	Package Type	Form	Quantity Orderable part numb	Orderable part number
IRGC4067B	Die on Film	Wafer	1	IRGC4067B

Mechanical Parameters

Die Size	6.528 x 9.144 mm ²		
Minimum Street Width	75	μm	
Emiter Pad Size (Included Gate Pad)	See Die Drawing		
Gate Pad Size	0.55 x 0.553	mm ²	
Area Total / Active	59.69/ 44		
Thickness	70	μm	
Wafer Size	150	mm	
Flat Position	0	Degrees	
Maximum-Possible Chips per Wafer	250pcs.		
Passivation Front side	Silicon Nitride		
Front Metal	Al (4µm), Si (1%)		
Backside Metal	Al (1kA°), Ti (1kA°), Ni (4kA°), Ag (6kA°)		
Die Bond	Electrically conductive epoxy or solder		
Reject Ink Dot Size	0.25mm min (black, center)		
Recommended Storage Environment	Store in original container, in dry Nitrogen, < 6 months at an ambient temperature of 23°C		
Reference Packaged Part	IRGPS4067DPbF		

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, T _J =25°C	600	V
I_{C}	DC Collector Current	•	Α
I _{LM}	Clamped Inductive Load Current @	480	Α
$V_{\sf GE}$	Gate Emitter Voltage	± 20	V
T_{J}, T_{STG}	Operating Junction and Storage Temperature	-40 to +175	ů

Static Characteristics (Tested on wafers) . T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600				V _{GE} = 0V, I _C = 500μA ⑤
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.7	2.05	V	$V_{GE} = 15V, I_{C} = 120A, T_{J} = 25^{\circ}C$
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	4.0		6.5		$I_C = 5.6$ mA, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	50	μΑ	V _{CE} = 600V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 400	nA	$V_{CE} = 0V$, $V_{GE} = \pm 20V$

Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{CE(sat)}$	Collector-to-Emitter Saturated Voltage		1.7	2.05		V _{GE} = 15V, I _C = 120A , T _J = 25°C
• CE(Sat)	concert to Emiliar catalates vehicle		2.2		,	$V_{GE} = 15V, I_{C} = 120A, T_{J} = 175^{\circ}C$
SCSOA	Short Circuit Safe Operating Area	5				V_{GE} = 15V, V_{CC} = 400V, ② R_{G} = 4.7 Ω , V_{P} ≤ 600V, T_{J} = 150°C
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			$T_J = 175^{\circ}\text{C}, I_C = 480\text{A}$ $V_{CC} = 480\text{V}, Vp \le 600\text{V}$ $Rg = 4.7\Omega, V_{GE} = +20\text{V}$ to 0V	
C _{iss}	Input Capacitance		7750			V _{GE} = 0V
Coss	Output Capacitance		550		pF	V _{CE} = 30V
C_{rss}	Reverse Transfer Capacitance		225			f = 1.0MHz
$\overline{Q_g}$	Total Gate Charge (turn-on)	_	240	_		I _C = 200A ⑥
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	69	_	nC	V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)		90			V _{CC} = 400V

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions ③
$t_{d(on)}$	Turn-On delay time		50	_		I _C = 120A, V _{CC} = 400V
t _r	Rise time	_	130	_		$R_G = 4.7\Omega$, $V_{GE} = 15V$
$t_{d(off)}$	Turn-Off delay time	_	160	_		T _J = 25°C
t_f	Fall time	_	130	_		
$t_{d(on)}$	Turn-On delay time	_	50	_		$I_{\rm C}$ = 120A, $V_{\rm CC}$ = 400V
t _r	Rise time	_	130	_		$R_G = 4.7\Omega$, $V_{GE} = 15V$
$t_{d(off)}$	Turn-Off delay time	_	200	_	1	T _J = 175°C
t _f	Fall time	_	150	_		

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. LETTER DESIGNATION:

S = SOURCE SK = SOURCE KELVIN E = EMITTER
G = GATE IS = CURRENTSENSE

4. DIMENSIONAL TOLERANCES:

BONDING PADS: < 0.635 TOLERANCE = +/- 0.013

WIDTH < [.0250] TOLERANCE = +/- [.0005]

& > 0.635 TOLERANCE = +/- [.0010]

ENGTH > [.0250] TOLERANCE = +/- [.0010]

OVERALL DIE: < 1.270 TOLERANCE = +/- [.004]

WIDTH < [.050] TOLERANCE = +/- [.004]

& > 1.270 TOLERANCE = +/- [.008]

5. DIE THICKNESS = 0.070 [.0028] TOL: = 0.007 [.0003]

REFERENCE: IRGC4067B IRGPS4067PBF IRGPS4067DPBF AUIRGPS4067D

Notes:

- \odot The current in the application is limited by T_{JMax} and the thermal properties of the assembly.
- ② Not subject to production test- Verified by design / characterization.
- 3 Values influenced by parasitic L and C in measurement.
- Φ V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 9.0μH, R_G = 4.7Ω.
- S Refer to AN-1086 for guidelines for measuring V_{(BR)CES} safely
- Die Level Characterization.

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the
 assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office. http://die.irf.com

Revision History

Date	Comments			
	Updated IFX logo on all pages			
07/02/2015	 Removed Vcesat @ I_C = 10A, V_{GE} = 15V on page 2. 			
	 Added Vcesat @ I_C = 170A, V_{GE} = 15V on page 2. 			

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/