PD -95340A

International **tor** Rectifier

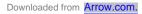
- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge
- Lead-Free
- Halogen-Free

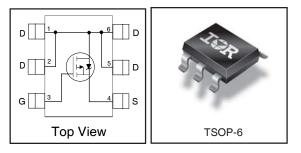
Description

These P-channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The TSOP-6 package with its customized leadframe produces a HEXFET[®] power MOSFET with $R_{DS(on)}$ 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

Absolute Maximum Ratings


	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-3.8	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-3.0	А
I _{DM}	Pulsed Drain Current①	-15	
P _D @T _A = 25°C	Maximum Power Dissipation ³	2	W
P _D @T _A = 70°C	Maximum Power Dissipation ³	1.28	W
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C


Thermal Resistance

	Parameter	Max.	Units
R _{0JA}	Maximum Junction-to-Ambient③	62.5	°C/W

www.irf.com

1 04/20/10

IRF5805PbF HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	ID
-30V	$0.098@V_{GS} = -10V$	-3.8A
	0.165@V _{GS} = -4.5V	-3.0A

						, , , , , , , , , , , , , , , , , , ,	
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250 \mu A$	
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = -1mA	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.098	Ω	V_{GS} = -10V, I_D = -3.8A \textcircled{O}	
1 1DS(01)				0.165		V_{GS} = -4.5V, I_{D} = -3.0A $\textcircled{2}$	
V _{GS(th)}	Gate Threshold Voltage	-1.0		-2.5	V	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$	
9fs	Forward Transconductance	3.5			S	$V_{DS} = -10V, I_D = -3.8A$	
l	Drain-to-Source Leakage Current			-15		$V_{DS} = -24V, V_{GS} = 0V$	
IDSS	Drain-10-Source Leakage Guiterit			-25	μA	V_{DS} = -24V, V_{GS} = 0V, T_J = 70°C	
lass	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V	
I _{GSS}	Gate-to-Source Reverse Leakage			100		$V_{GS} = 20V$	
Qg	Total Gate Charge		11	17		I _D = -3.8A	
Q _{gs}	Gate-to-Source Charge		2.3		nC	V _{DS} = -15V	
Q _{gd}	Gate-to-Drain ("Miller") Charge		1.5			V _{GS} = -10V	
t _{d(on)}	Turn-On Delay Time		11	17		$V_{DD} = -15V, V_{GS} = -10V$	
t _r	Rise Time		14	21	ns	I _D = -1.0A	
t _{d(off)}	Turn-Off Delay Time		90	135	115	$R_G = 6.0\Omega$	
t _f	Fall Time		49	74		R _D = 15Ω ②	
Ciss	Input Capacitance		511			$V_{GS} = 0V$	
Coss	Output Capacitance		79		рF	V _{DS} = -25V	
C _{rss}	Reverse Transfer Capacitance		50			f = 1.0MHz	

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current					MOSFET symbol			
	(Body Diode)		2.	2.0			showing the		
I _{SM}	Pulsed Source Current			45	A	integral reverse			
	(Body Diode) ①						-15		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C, I_S = -2.0A, V_{GS} = 0V$ (2)			
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25^{\circ}C, I_F = -2.0A$			
Q _{rr}	Reverse Recovery Charge		16	24	nC	di/dt = -100A/µs ②			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ③ Surface mounted on 1 in square Cu board, $t \leq 10$ sec.
- ⁽²⁾ Pulse width \leq 400µs; duty cycle \leq 2%.

International **tor** Rectifier

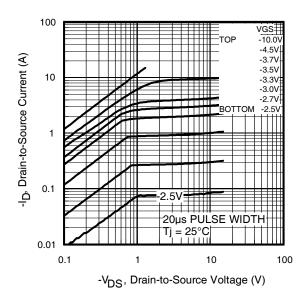


Fig 1. Typical Output Characteristics

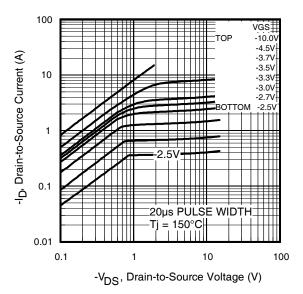


Fig 2. Typical Output Characteristics

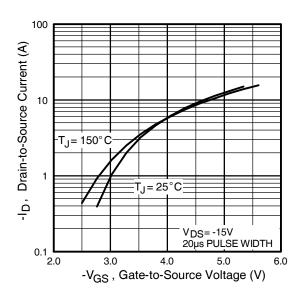
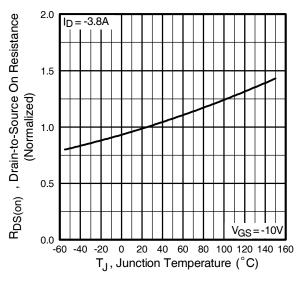
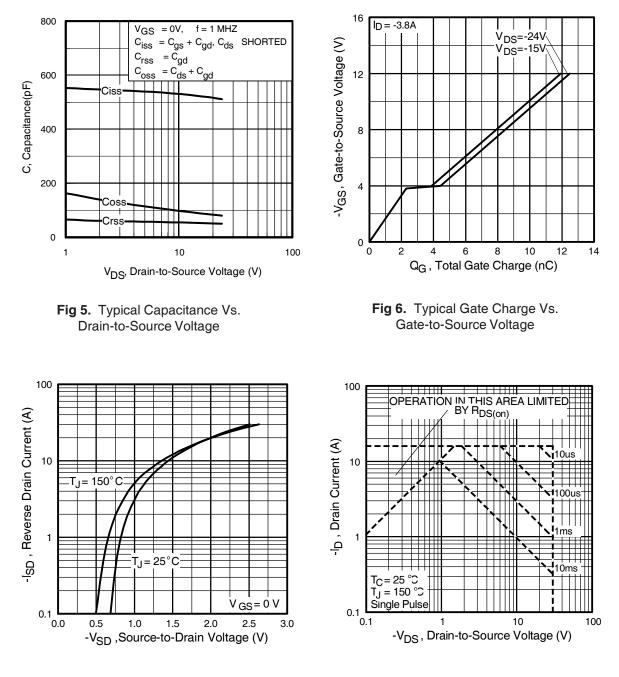
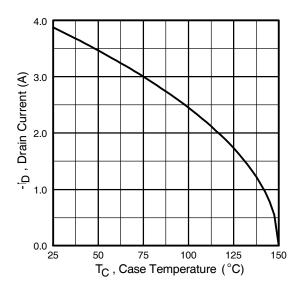
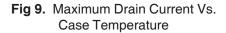




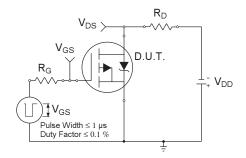
Fig 3. Typical Transfer Characteristics

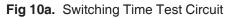
International




www.irf.com

4


Fig 7. Typical Source-Drain Diode Forward Voltage


International

IRF5805PbF

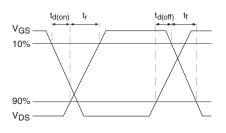
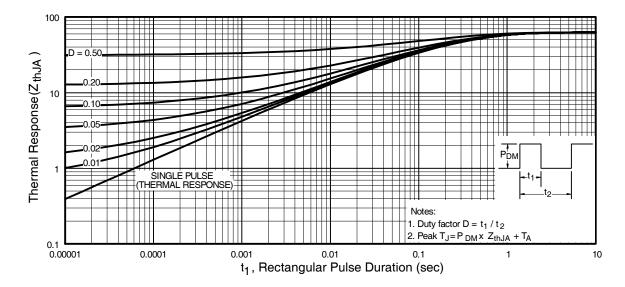
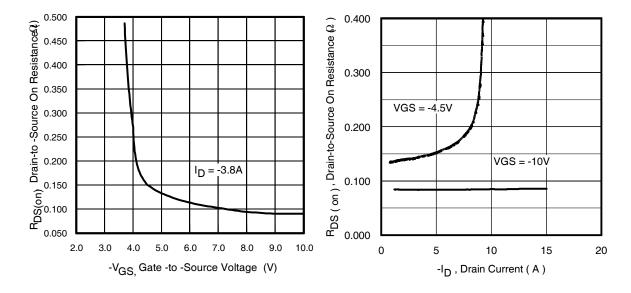
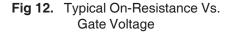
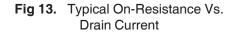
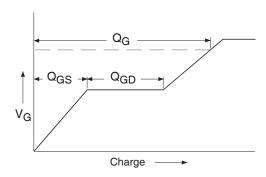


Fig 10b. Switching Time Waveforms


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient


International

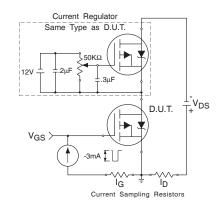
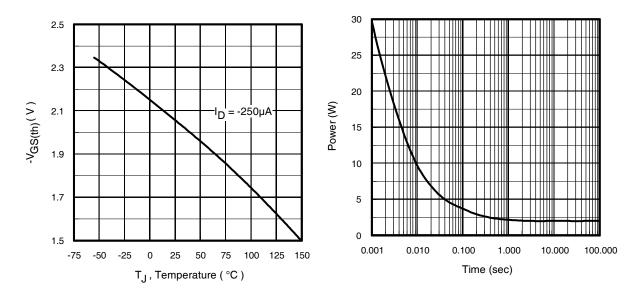
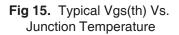
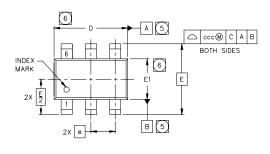
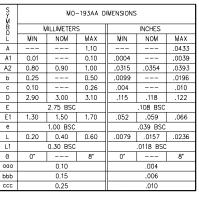
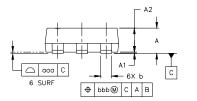
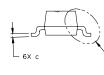




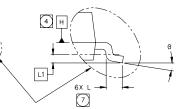
Fig 14b. Gate Charge Test Circuit


International **tor** Rectifier

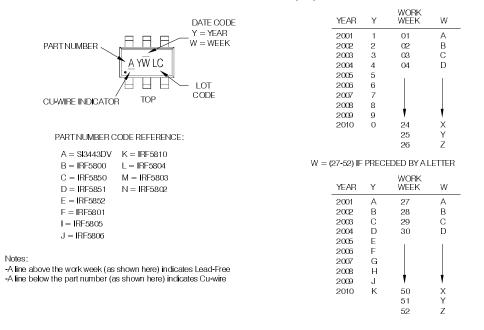




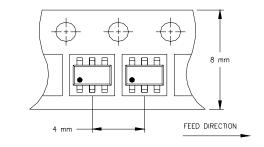

TSOP-6 Package Outline



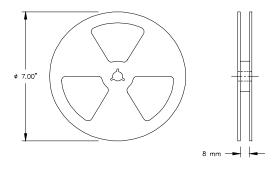
International



TSOP-6 Part Marking Information


W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/


International **TOR** Rectifier

TSOP-6 Tape & Reel Information

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

> International **ICR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2010 9

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.