PD - 91368B

IRFL4310

International

HEXFET[®] Power MOSFET

- Surface Mount
- Dynamic dv/dt Rating
- Fast Switching
- Ease of Paralleling
- Advanced Process Technology
- Ultra Low On-Resistance

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SOT-223 package is designed for surface-mount using vapor phase, infra red, or wave soldering techniques. Its unique package design allows for easy automatic pickand-place as with other SOT or SOIC packages but has the added advantage of improved thermal performance due to an enlarged tab for heatsinking. Power dissipation of 1.0W is possible in a typical surface mount application.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V**	2.2	Α	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V*	1.6		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V*	1.3		
IDM	Pulsed Drain Current ①	13	T	
P _D @T _A = 25°C	Power Dissipation (PCB Mount)**	2.1	W	
P _D @T _A = 25°C	Power Dissipation (PCB Mount)*	1.0	W	
	Linear Derating Factor (PCB Mount)*	8.3	mW/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy®	47	mJ	
I _{AR}	Avalanche Current①	1.6	A	
E _{AR}	Repetitive Avalanche Energy ^{①*}	0.10	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns	
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JA}	Junction-to-Amb. (PCB Mount, steady state)*	93	120	°C \\
R _{θJA}	Junction-to-Amb. (PCB Mount, steady state)**	48	60	0/00

* When mounted on FR-4 board using minimum recommended footprint.

** When mounted on 1 inch square copper board, for comparison with other SMD devices.

www.irf.com

5/11/99

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.12		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.20	Ω	V_{GS} = 10V, I_D = 1.6A \circledast
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V_{DS} = V_{GS} , I_D = 250 μ A
g fs	Forward Transconductance	1.5			S	V _{DS} = 50V, I _D = 0.80 A
1	Drain-to-Source Leakage Current			25		V _{DS} = 100V, V _{GS} = 0V
DSS	Drain-to-oburoe Leakage Gurrent			250	μΑ	V _{DS} = 80V, V _{GS} = 0V, T _J = 125°C
lass	Gate-to-Source Forward Leakage			100	۳٨	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
Qg	Total Gate Charge		17	25		I _D = 1.6A
Q _{gs}	Gate-to-Source Charge		2.1	3.1	nC	V _{DS} = 80V
Q _{gd}	Gate-to-Drain ("Miller") Charge		7.8	12		V _{GS} = 10V, See Fig. 6 and 13 ⊛
t _{d(on)}	Turn-On Delay Time		7.8			$V_{DD} = 50V$
tr	RiseTime		18			I _D = 1.6A
t _{d(off)}	Turn-Off Delay Time		34		115	R _G = 6.2 Ω
t _f	Fall Time		20		Ī	R _D = 31 Ω, See Fig. 10 ④
C _{iss}	Input Capacitance		330			V _{GS} = 0V
C _{oss}	Output Capacitance		92		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		54			f = 1.0MHz, See Fig. 5

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			0.04		MOSFET symbol D
	(Body Diode)			0.91		showing the
I _{SM}	Pulsed Source Current			12	A	integral reverse _G L T
	(Body Diode) ①			13	13	p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T_J = 25°C, I_S = 1.6A, V_{GS} = 0V ④
t _{rr}	Reverse Recovery Time		72	110	ns	T _J = 25°C, I _F = 1.6A
Q _{rr}	Reverse RecoveryCharge		210	320	nC	di/dt = 100A/µs ⊛

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $@V_{DD} = 25V, starting T_J = 25^{\circ}C, L = 9.2 mH R_G = 25\Omega, I_{AS} = 3.2A.$ (See Figure 12)

3 I_{SD} \leq 1.6A, di/dt \leq 340A/µs, V_{DD} \leq V_{(BR)DSS}, T_J \leq 150°C

④ Pulse width \leq 300µs; duty cycle \leq 2%.

International **TGR** Rectifier

Fig 1. Typical Output Characteristics,

Fig 3. Typical Transfer Characteristics

International

Forward Voltage

International **TOR** Rectifier

Fig 9a. Basic Gate Charge Waveform

Fig 9b. Gate Charge Test Circuit

IRFL4310

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International **100** Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

International **TOR** Rectifier

IRFL4310

Peak Diode Recovery dv/dt Test Circuit

* $V_{GS} = 5V$ for Logic Level Devices

Fig 13. For N-Channel HEXFETS

International **TOR** Rectifier

Package Outline SOT-223 (TO-261AA) Outline

Part Marking Information EXAMPLE: THIS IS AN IRFL014

SOT-223

International **TOR** Rectifier

Tape & Reel Information

SOT-223 Outline

http://www.irf.com/ Data and specifications subject to change without notice. 5/99