

HEXFET[®] Power MOSFET

Features

- Advanced Process Technology
- Low On-Resistance
- Logic Level Gate Drive
- P-Channel MOSFET
- Dynamic dV/dT Rating
- 150°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free, RoHS Compliant
- Automotive Qualified*

VDSS -20V S -2 R R S(on) max 0.06 0 ID -5.4

Description

Specifically designed for Automotive applications, this cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

Bass part number	Package Type	Standard	Pack	Orderable Part Number	
Base part number		Form	Quantity	Orderable Fait Number	
AUIRF7207Q	SO-8	Tape and Reel	2500	AUIRF7207QTR	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	-20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	-5.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-4.3	А
I _{DM}	Pulsed Drain Current ①	-43	
P _D @T _A = 25°C	Power Dissipation	2.5	W
P _D @T _A = 70°C	Power Dissipation	1.6	vv
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
V _{GSM}	Gate-to-Source Voltage Single Pulse tp<10µs	-16	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 2	140	mJ
TJ	Operating Junction and -55 to + 150		°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JA}$	Junction-to-Ambient S		50	°C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

ns

pF

Units

А

А

V

V/ns

ns

nC

 $R_G = 6.0\Omega$

 $R_D = 10\Omega$

 $V_{GS} = 0V$

V_{DS} = -15V

f = 1.0 MHz

showing the

integral reverse

di/dt = 100A/µs

p-n junction diode.

T_J = 25°C, I_F = -3.1A

MOSFET symbol

Conditions

T_J = 25°C, I_S = -3.1A, V_{GS} = 0V③

T_J = 175°C, I_S= -3.1A, V_{DS} = -20V

43

41

780

410

200

Тур.

5.0

42

50

Min.

Max.

-3.1

-43

-1.0

63

75

= 0V, T_J = 125°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	V _{GS} = 0V, I _D = -250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.011		V/°C	Reference to 25° C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.06	Ω	V _{GS} = -4.5V, I _D = -5.4A ④
				0.125		V _{GS} = -2.7V, I _D = -2.7A ④
V _{GS(th)}	Gate Threshold Voltage	-0.7		-1.6	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Transconductance	8.3			S	V _{DS} = -10V, I _D = -5.4A
	Drain to Course Lookage Current			-1.0		$V_{DS} = -16V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current			-25	μA	V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			100	ПА	V _{GS} = -12V
Dynamic Elec	ctrical Characteristics @ T_J = 25°C (unless other	wise sp	oecified)		
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge		15	22		I _D = -5.4A
Q_{gs}	Gate-to-Source Charge		2.2	3.3	nC	V _{DS} = -10V
Q_{gd}	Gate-to-Drain ("Miller") Charge		5.7	8.6		V _{GS} = -4.5V
t _{d(on)}	Turn-On Delay Time		11]	V _{DD} = -10V
t _r	Rise Time		24		ns	I _D = -1.0A

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Notes:

t_{d(off)}

Ciss Coss

Crss

 I_S

I_{SM}

 V_{SD}

lrr

Qrr

dv/dt

Diode Characteristics

Symbol

tf

- Repetitive rating; pulse width limited by max. junction temperature. 1
- Starting $T_J = 25^{\circ}$ C, L = 9.6mH, $R_G = 25\Omega$, $I_{AS} = -5.4$ A. 2
- $I_{SD} \leq -5.4A$, di/dt $\leq -79A/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, $T_J \leq 150^{\circ}C$. 3
- Pulse width \leq 300µs; duty cycle \leq 2%. 4

Turn-Off Delay Time

Input Capacitance

Output Capacitance

Parameter

Pulsed Source Current

Diode Forward Voltage

Peak Diode Recovery 3

Reverse Recovery Time

Reverse Recovery Charge

(Body Diode)

(Body Diode) ①

Reverse Transfer Capacitance

Continuous Source Current

Fall Time

(5) When mounted on 1 inch square copper board, t<10 sec.

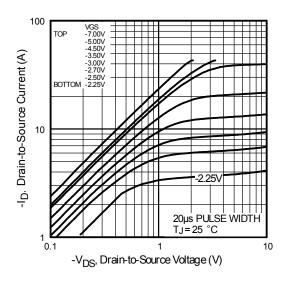


Fig. 1 Typical Output Characteristics

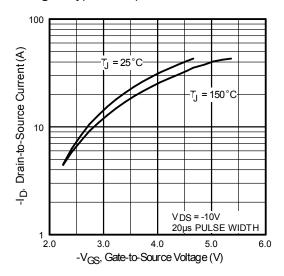


Fig. 3 Typical Transfer Characteristics

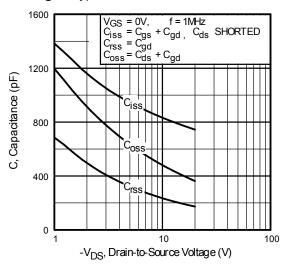


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

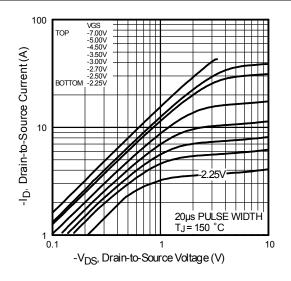


Fig. 2 Typical Output Characteristics

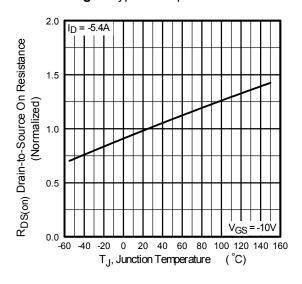


Fig. 4 Normalized On-Resistance vs. Temperature

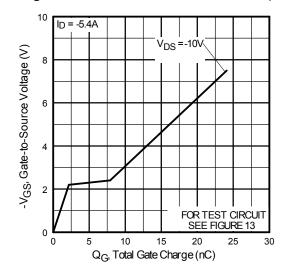


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

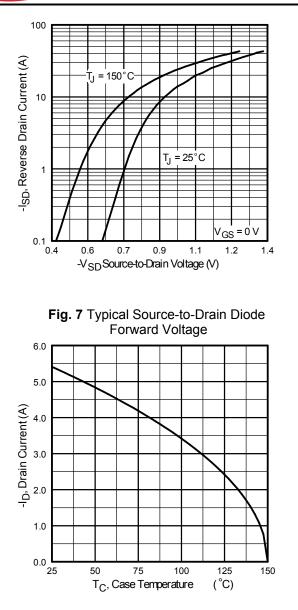


Fig 9. Maximum Drain Current vs. Case Temperature

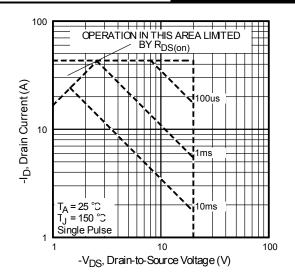


Fig 8. Maximum Safe Operating Area

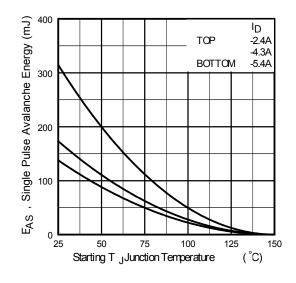


Fig 10. Maximum Avalanche Energy vs. Drain Current

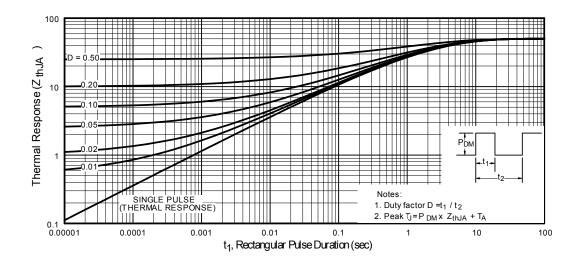
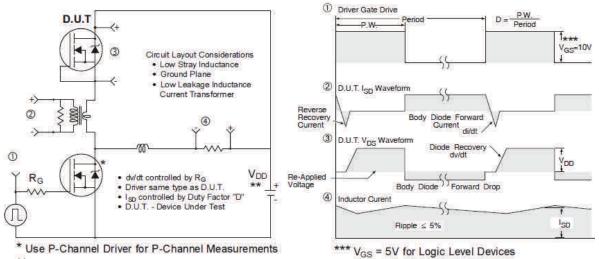



Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

** Reverse Polarity for P-Channel

Fig 14. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs

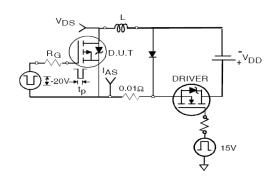


Fig 14a. Unclamped Inductive Test Circuit

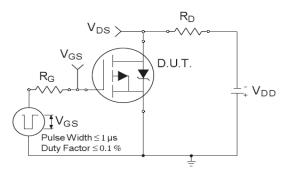
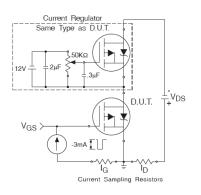
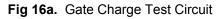




Fig 15a. Switching Time Test Circuit

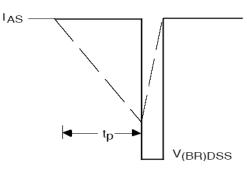


Fig 14b. Unclamped Inductive Waveforms

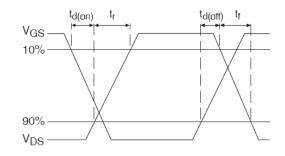
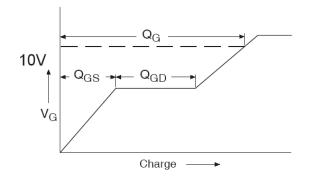
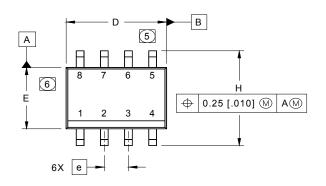
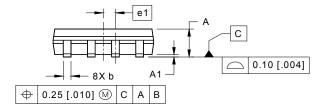
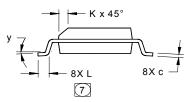


Fig 15b. Switching Time Waveforms

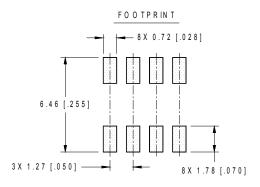




Fig 16b. Gate Charge Waveform

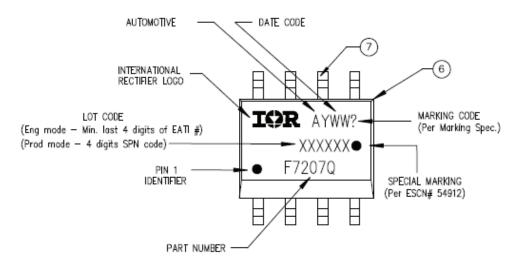

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

ЫМ	INC	HES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
с	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
E	.1497	.1574	3.80	4.00	
е	.050 BASIC		1.27 BASIC		
e 1	.025 BASIC		0.635 BASIC		
н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0°	8°	0°	8°	



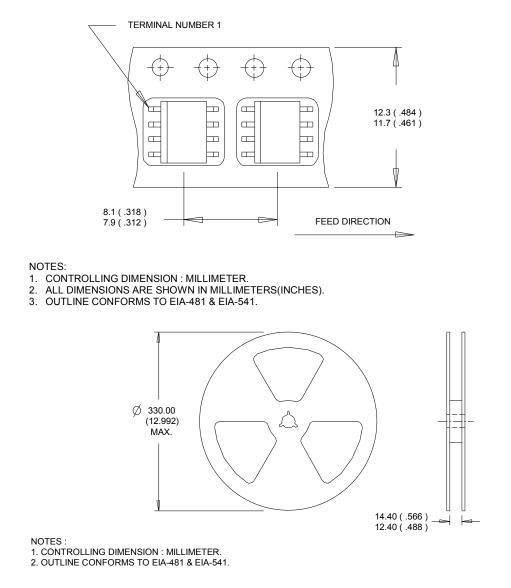
NOTES:


- 1. DIMENSIONING & TOLERANCING PERASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER

3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

4. OUTLINE CONFORMS TO JEDEC OUTLINE M S-012AA.
5 DIMENSION DOES NOT IN CLUDE M OLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT IN CLUDE M OLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive (per AEC-Q101) Comments: This part number(s) passed Automotive qualification. Infineon's			
					Industrial and Consumer qualification level is granted by extension of the higher Automotive level.
		Moisture Sensitivity Level		SO-8	MSL1
			Class M1B (+/- 100V) [†]		
	Machine Model		AEC-Q101-002		
			Class H1A (+/- 500V) [†]		
	Human Body Model		AEC-Q101-001		
			Class C5 (+/- 2000V) [†]		
	Charged Device Model		AEC-Q101-005		
RoHS Compliant			Yes		

+ Highest passing voltage.

Revision History

Date	Comments
4/3/2014	 Added "Logic Level Gate Drive" bullet in the features section on page 1
11/10/2013	 Updated datasheet with corporate template Corrected ordering table on page 1.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.