International **TOR** Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET[®]TRANSISTORS SURFACE MOUNT (LCC-18)

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRFE9024	- 60V	0.28Ω	-5.4A

The leadless chip carrier (LCC) package represents the logical next step in the continual evolution of surface mount technology. Desinged to be a close replacement for the TO-39 package, the LCC will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the LCC package to meet the specific needs of the power market by increasing the size of the bottom source pad, thereby enhancing the thermal and electrical performance. The lid of the package is grounded to the source to reduce RF interference.

IRFE9024 60V, P-CHANNEL

- Surface Mount
- Small Footprint
- Alternative to TO-39 Package

LCC-18

- Hermetically Sealed
- Dynamic dv/dt Rating
- Avalanche Energy Rating
- Simple Drive Requirements
- Light Weight

	Parameter		Units
$I_D @ V_{GS} = -10V, T_C = 25^{\circ}C$	Continuous Drain Current	-5.4	
$I_D @ V_{GS} = -10V, T_C = 100^{\circ}C$	Continuous Drain Current	-3.4	A
IDM	Pulsed Drain Current ①	-22	
$P_{D} @ T_{C} = 25^{\circ}C$	Max. Power Dissipation	14	W
	Linear Derating Factor	0.11	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
EAS Single Pulse Avalanche Energy ⁽²⁾		120	mJ
IAR	Avalanche Current ①	-	A
EAR	Repetitive Avalanche Energy ①	-	mJ
dv/dt Peak Diode Recovery dv/dt ③		-4.5	V/ns
ΤJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Pckg. Mounting Surface Temp.	300 (for 5 S)	
	Weight	0.42(typical)	g

Absolute Maximum Ratings

For footnotes refer to the last page

International **IOR** Rectifier

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	-60	_	_	V	$V_{GS} = 0V, I_D = -1.0mA$
$\Delta BV_{DSS}/\Delta T_J$	Temperature Coefficient of Breakdown Voltage	_	-0.068		V/°C	Reference to 25°C, $I_D = -1.0$ mA
R _{DS(on)}	Static Drain-to-Source On-State	_	—	0.28	Ω	$V_{GS} = -10V, I_{D} = -3.4A^{\text{(4)}}$
	Resistance	_	—	0.29	52	$V_{GS} = -10V, I_D = -5.4A$ (4)
VGS(th)	Gate Threshold Voltage	-2.0	—	- 4.0	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
gfs	Forward Transconductance	1.3	—	—	S (Ω)	V_{DS} > -15V, I_{DS} = -3.4A (4)
IDSS	Zero Gate Voltage Drain Current	_		-25		V_{DS} = -48V, V_{GS} = 0V
		_	—	-250	μA	$V_{DS} = -48V$
						$V_{GS} = 0V, T_J = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward		—	-100	nA	$V_{GS} = -20V$
IGSS	Gate-to-Source Leakage Reverse		—	100		$V_{GS} = 20V$
Qg	Total Gate Charge	_	—	19		$V_{GS} = -10V, ID_{=} -5.4A$
Qgs	Gate-to-Source Charge		—	5.4	nC	$V_{DS} = -30V$
Qgd	Gate-to-Drain ('Miller') Charge		—	11		
t _{d(on)}	Turn-On Delay Time	_	—	20		V _{DD} =-30V, I _D = -5.4A,
tr	Rise Time	_	—	100	ns	$R_G = 7.5\Omega$
td(off)	Turn-Off Delay Time	_	—	23	11.5	
tf	Fall Time	_	—	44		
$L_{S} + L_{D}$	Total Inductance		6.1		nH	Measured from the center of drain pad to center of source pad
Ciss	Input Capacitance		570			$V_{GS} = 0V, V_{DS} = -25V$
C _{oss}	Output Capacitance		360	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	_	65	_		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)		_		-5.4	А	
ISM	Pulse Source Current (Body Diode) ①		_	_	-22		
VSD	Diode Forward Voltage			_	-6.3	V	$T_{j}=25^{\circ}C,\ I_{S}=\text{-}5.4A,\ V_{GS}=0V\ \textcircled{9}$
trr	Reverse Recovery Time				200	nS	Tj = 25°C, IF = -5.4A, di/dt \leq -100A/ μ s
QRR	Reverse Recovery Charge		_		2.2	μc	$V_{DD} \leq -50V $
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{S} + L_{D}$.					

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
R _{thJC}	Junction to Case	_	_	9.1	°C/W	
R _{th} J-PCB	Junction to PC Board	—	—	26	C/ W	Soldered to a copper clad PC board

For footnotes refer to the last page

International

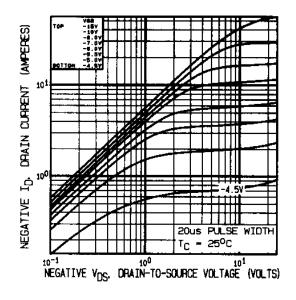


Fig 1. Typical Output Characteristics

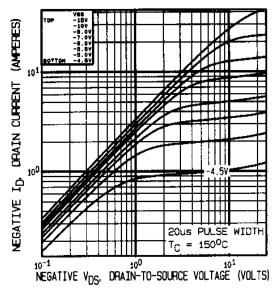


Fig 2. Typical Output Characteristics

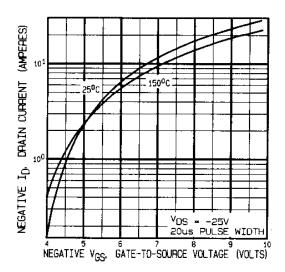


Fig 3. Typical Transfer Characteristics

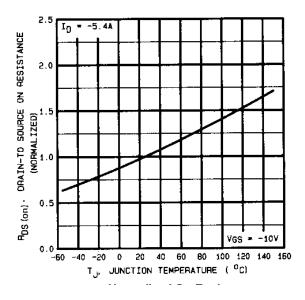
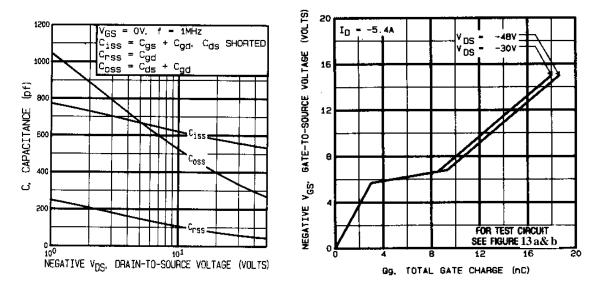
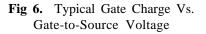
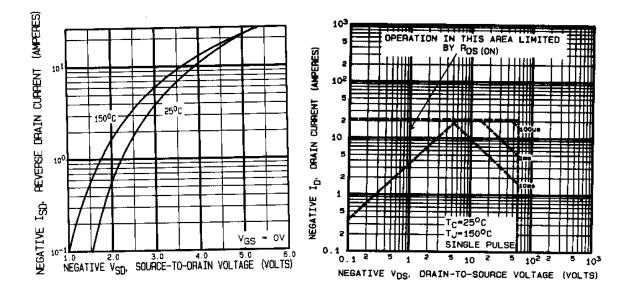
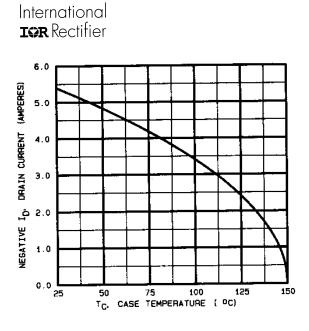
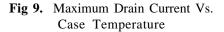




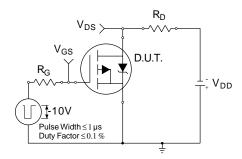
Fig 4. Normalized On-Resistance Vs. Temperature

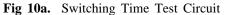
International

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage


Fig 7. Typical Source-Drain Diode Forward Voltage


Fig 8. Maximum Safe Operating Area


www.irf.com

4

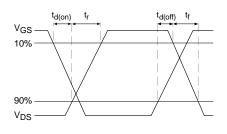


Fig 10b. Switching Time Waveforms

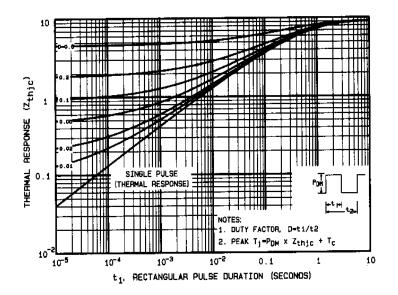


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

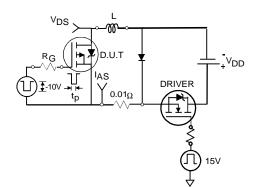


Fig 12a. Unclamped Inductive Test Circuit

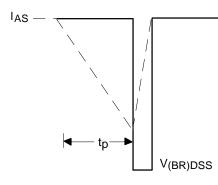


Fig 12b. Unclamped Inductive Waveforms

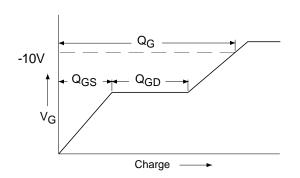


Fig 13a. Basic Gate Charge Waveform

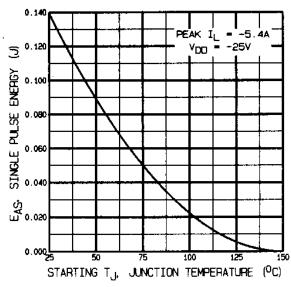
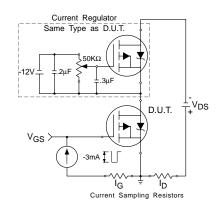
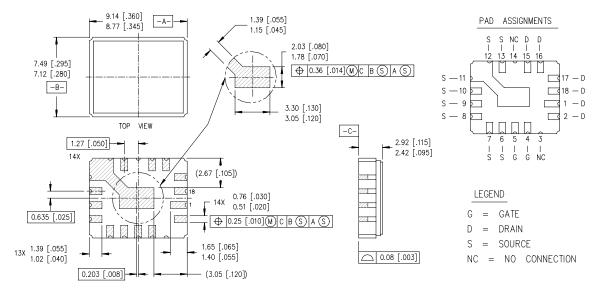


Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit

Foot Notes:

① Repetitive Rating; Pulse width limited by maximum junction temperature.

② $V_{DD} = -25V$, starting $T_J = 25^{\circ}C$, Peak $I_L = -5.4A$, 3 I_{SD} ≤ -5.4A, di/dt ≤ -200A/μs, V_{DD}≤ -60V, TJ ≤ 150°C Suggested RG =7.5 Ω
4 Pulse width ≤ 300 μs; Duty Cycle ≤ 2%

Case Outline and Dimensions — LCC-18

NOTES:

1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.

2. CONTROLLING DIMENSION: INCH.

3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)83 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 10/00