

POWER MOSFET THRU-HOLE (TO-254AA)

500V, N-CHANNEL REF: MIL-PRF-19500/596 HEXFET MOSFET TECHNOLOGY

Product Summary

Part Number	R _{DS(on)}	I _D		
IRFM440	0.85Ω	8.0A		

TO-254AA

Description

HEXFET MOSFET technology is the key to IR HiRel advanced line of power MOSFET transistors. The efficient geometry design achieves very low on-state resistance combined with high trans conductance. HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, high energy pulse circuits, and virtually any application where high reliability is required. The HEXFET transistor's totally isolated package eliminates the need for additional isolating material between the device and the heat sink. This improves thermal efficiency and reduces drain capacitance.

Features

- Simple Drive Requirements
- Ease of Paralleling
- · Hermetically Sealed
- · Electrically Isolated
- Dynamic dv/dt Rating
- Light Weight
- ESD Rating: Class 2 per MIL-STD-750, Method 1020

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
I _{D1} @ V _{GS} = 10V, T _C = 25°C	Continuous Drain Current	8.0	
I _{D2} @ V _{GS} = 10V, T _C = 100°C	Continuous Drain Current	5.0	Α
I _{DM} @T _C = 25°C	Pulsed Drain Current ①	32	
P _D @T _C = 25°C	Maximum Power Dissipation	125	W
	Linear Derating Factor	1.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ②	700	mJ
I _{AR}	Avalanche Current ①	8.0	Α
E _{AR}	Repetitive Avalanche Energy ①	12.5	mJ
dv/dt	Peak Diode Recovery dv/dt ③	3.5	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. /1.6 mm from case for	
	Weight	9.3 (Typical)	g

For Footnotes refer to the page 2.

Electrical Characteristics @ T_i = 25°C (Unless Otherwise Specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_{D} = 1.0mA$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.78		V/°C	Reference to 25°C, I _D = 1.0mA
	Static Drain-to-Source On-State			0.85	0	V _{GS} = 10V, I _D = 5.0A ④
R _{DS(on)}	Resistance			0.95	Ω	V _{GS} = 10V, I _D = 8.0A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
Gfs	Forward Transconductance	4.7			S	V _{DS} = 15V, I _D = 5.0A ④
I _{DSS}	Zero Gate Voltage Drain Current			25		$V_{DS} = 400V, V_{GS} = 0V$
	Zero Gate Voltage Drain Current			250	μΑ	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Leakage Forward			100	nA	V _{GS} = 20V
	Gate-to-Source Leakage Reverse			-100	IIA	V _{GS} = -20V
Q_G	Total Gate Charge			68.5		$I_{D} = 8.0A$
Q _{GS}	Gate-to-Source Charge			12.5	nC	V _{DS} = 250V
Q_{GD}	Gate-to-Drain ('Miller') Charge			42.4		V _{GS} = 10V
$t_{d(on)}$	Turn-On Delay Time			21		$V_{DD} = 250V$
tr	Rise Time			73	20	$I_{D} = 8.0A$
$t_{d(off)}$	Turn-Off Delay Time			72	ns	$R_G = 9.1\Omega$
t _f	Fall Time			51		V _{GS} = 10V
Ls +L _D	Total Inductance		6.8		nH	Measured from Drain lead (6mm / 0.25 in from package) to Source lead (6mm/ 0.25 in from package) with Source wire internally bonded from Source pin to Drain pad
C _{iss}	Input Capacitance		1300			V _{GS} = 0V
C _{oss}	Output Capacitance		310		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		120			f = 1.0MHz

Source-Drain Diode Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			8.0	۸	
I _{SM}	Pulsed Source Current (Body Diode) ①			32	Α	
V_{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C, I_S = 8.0A, V_{GS} = 0V$
t _{rr}	Reverse Recovery Time			700	ns	$T_J = 25^{\circ}C, I_F = 8.0A, V_{DD} \le 50V$
Q _{rr}	Reverse Recovery Charge			8.9	μC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrins	ic turn-c	n time i	s negligib	le (turn-on is dominated by L_S+L_D)

Thermal Resistance

Symbol	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case			1.0	
$R_{\theta CS}$	Case -to-Sink		0.21		°C/W
$R_{\theta JA}$	Junction-to-Ambient (Typical socket mount)			48	

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L = 21.8mH, Peak I_L = 8.0A, V_{GS} = 10V
- $\label{eq:local_spin_spin} \textbf{3} \quad I_{SD} \leq 8.0 A, \, di/dt \leq 100 A/\mu s, \, V_{DD} \leq 500 V, \, T_{J} \leq 150 ^{\circ} C$
- 4 Pulse width \leq 300 µs; Duty Cycle \leq 2%.

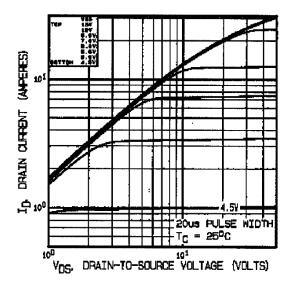


Fig 1. Typical Output Characteristics

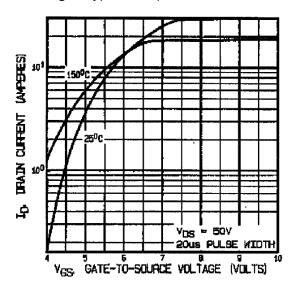
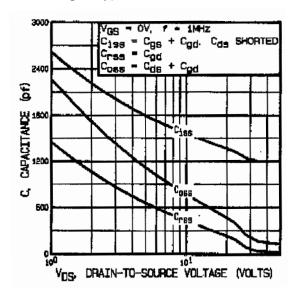



Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

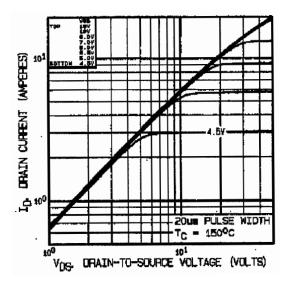


Fig 2. Typical Output Characteristics

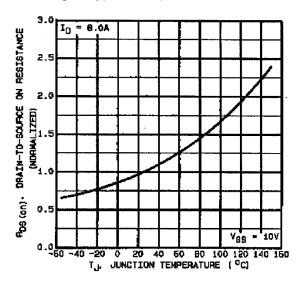
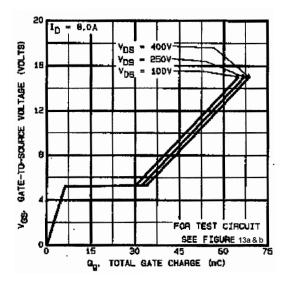



Fig 4. Normalized On-Resistance Vs. Temperature

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

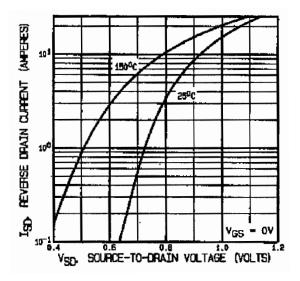


Fig 7. Typical Source-Drain Diode Forward Voltage

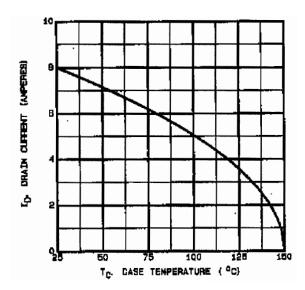


Fig 9. Maximum Drain Current Vs. Case Temperature

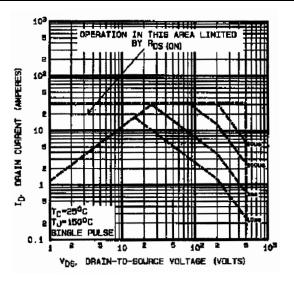
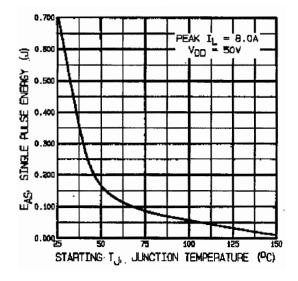



Fig 8. Maximum Safe Operating Area

Fig 10. Maximum Avalanche Energy Vs. Drain Current

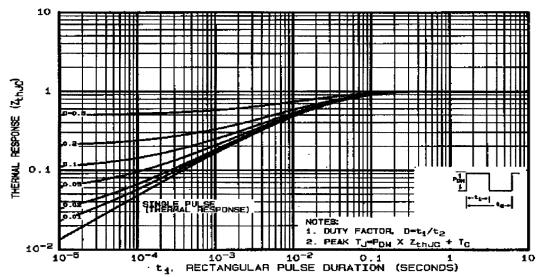


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

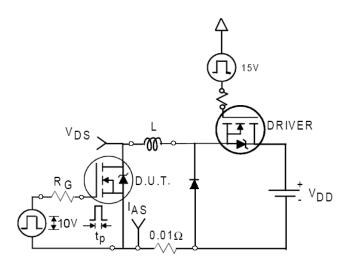


Fig 12a. Unclamped Inductive Test Circuit

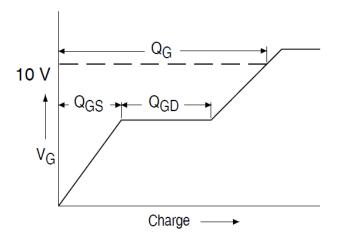


Fig 13a. Basic Gate Charge Waveform

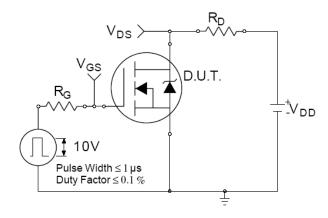


Fig 14a. Switching Time Test Circuit

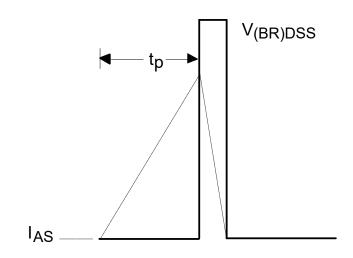


Fig 12b. Unclamped Inductive Waveforms

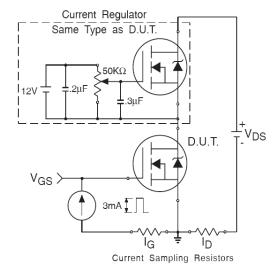


Fig 13b. Gate Charge Test Circuit

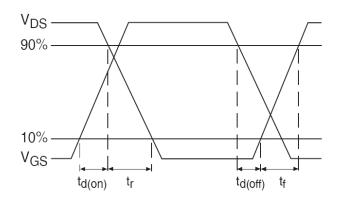
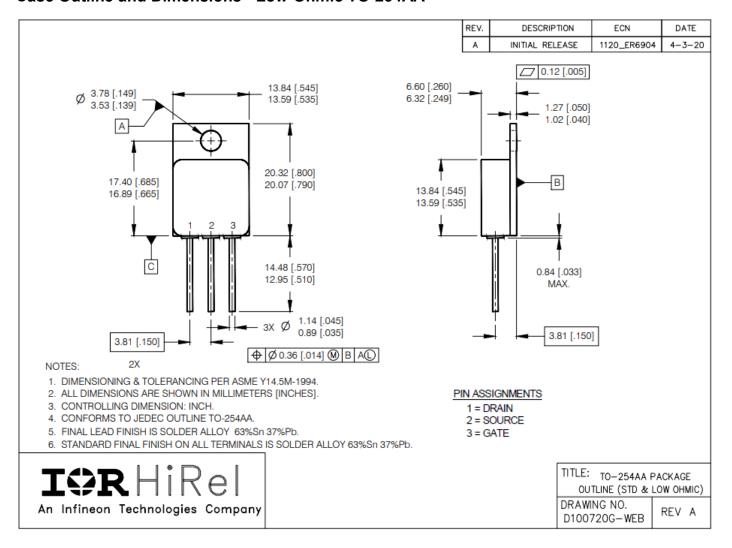



Fig 14b. Switching Time Waveforms

Note: For the most updated package outline, please see the website: TO-254AA

Case Outline and Dimensions - Low-Ohmic TO-254AA

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

Infineon Technologies Service Center: USA Tel: +1 (866) 951-9519 and International Tel: +49 89 234 65555

Leominster, Massachusetts 01453, USA Tel: +1 (978) 534-5776

San Jose, California 95134, USA Tel: +1 (408) 434-5000

Data and specifications subject to change without notice.

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/irhirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.