

RADIATION HARDENED POWER MOSFET SURFACE MOUNT (LCC-28)

100V, Combination 2N-2P CHANNEL

RAD-Hard™ HEXFET® ₹ TECHNOLOGY

Product Summary

i ioaact caiiiii	iai y				
Part Number	Radiation Level	RDS(on)	I _D	Channel	
IRHQ567110	100 kRads(Si)	0.27Ω	4.6A	N	
IRHQ563110	300 kRads(Si)	0.29Ω	4.6A	N	
IRHQ567110	100 kRads(Si)	0.96Ω	-2.8A	Р	
IRHQ563110	300 kRads(Si)	0.98Ω	-2.8A	Р	

Description

IR HiRel RAD-Hard™ HEXFET® MOSFET Technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching and temperature stability of electrical parameters.

Features

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- · Low Total Gate Charge
- Simple Drive Requirements
- · Hermetically Sealed
- Ceramic Package
- Surface Mount
- Light Weight
- ESD Rating: Class 1A per MIL-STD-750, Method 1020

Absolute Maximum Ratings (Per Die)

Pre-Irradiation

Symbol Parameter		N-Channel	P-Channel	Units
I_{D1} @ V_{GS} = ±12V, T_{C} = 25°C	Continuous Drain Current	4.6	-2.8	
I _{D2} @ V _{GS} = ±12V, T _C = 100°C	Continuous Drain Current	2.9	-1.8	Α
I _{DM} @T _C = 25°C	Pulsed Drain Current ①	18.4	-11.2	
P _D @T _C = 25°C	Maximum Power Dissipation	12	12	W
	Linear Derating Factor	0.1	0.1	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	± 20	V
E _{AS}	Single Pulse Avalanche Energy ②	47②	70②	mJ
I _{AR}	Avalanche Current ①	4.6	-2.8	Α
E _{AR}	Repetitive Avalanche Energy ①	1.2	1.2	mJ
dv/dt	Peak Diode Recovery dv/dt	6.1③	-7.1③	V/ns
T _J	Operating Junction and	55 to	±150	
T _{STG}	Storage Temperature Range	-55 to +150 300 (for 5s)		°C
	Package Mounting Surface Temp.			
	Weight	0.89 (Typical)		g

For Footnotes, refer to the page 2 for N Channel and page 3 for P Channel

Electrical Characteristics for Each N-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions		
BV _{DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_{D} = 1.0 \text{mA}$		
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.13		V/°C	Reference to 25°C, I _D = 1.0mA		
D	Static Drain-to-Source On-State			0.27	Ω	V _{GS} = 12V, I _{D2} = 2.9A ④		
$R_{DS(on)}$	Resistance			0.21	52	V _{GS} - 12V, I _{D2} - 2.9A ⊕		
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 1.0 \text{mA}$		
Gfs	Forward Transconductance	3.3			S	V _{DS} = 15V, I _{D2} = 2.9A ④		
I _{DSS}	Zero Gate Voltage Drain Current			10	μA	V_{DS} = 80V, V_{GS} = 0V		
				25	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$		
I _{GSS}	Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse			100	nA	$V_{GS} = 20V$		
				-100	11/-	V _{GS} = -20V		
Q_G	Total Gate Charge			13		$I_{D1} = 4.6A$		
Q_{GS}	Gate-to-Source Charge			4.0	nC	V _{DS} = 50V		
Q_{GD}	Gate-to-Drain ('Miller') Charge			3.9		V _{GS} = 12V		
t _{d(on)}	Turn-On Delay Time			20		$V_{DD} = 50V$		
tr	Rise Time			24	no	$I_{D1} = 4.6A$		
$t_{d(off)}$	Turn-Off Delay Time			32	ns	$R_G = 7.5\Omega$		
t _f	Fall Time			90		V _{GS} = 12V		
Ls +L _D	Total Inductance		6.1		nH	Measured from the center of drain pad to center of source pad		
C _{iss}	Input Capacitance		371			V _{GS} = 0V		
C _{oss}	Output Capacitance		108		pF	V _{DS} = 25V		
C _{rss}	Reverse Transfer Capacitance		3.0			f = 1.0MHz		

Source-Drain Diode Ratings and Characteristics for Each N-Channel Device

Symbol	Parameter		Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			4.6	^	
I _{SM}	Pulsed Source Current (Body Diode) ①			18.4	Α	
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 4.6A, V_{GS} = 0V$
t _{rr}	Reverse Recovery Time			173	ns	$T_J = 25^{\circ}C, I_F = 4.6A, V_{DD} \le 50V$
Q _{rr}	Reverse Recovery Charge			863	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{\rm S}$ + $L_{\rm D}$)				

Thermal Resistance for Each N-Channel Device

Symbol	Parameter	Min.	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case			11.8	°C/W
$R_{\theta JA}$	Junction-to-Ambient (Typical socket mount)			60	C/VV

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 25V, starting T_J = 25°C, L =4.4mH, Peak I_L = 4.6A, V_{GS} = 12V
- $\label{eq:local_spin_distance} \begin{tabular}{l} $\mathbb{J}_{SD} \leq 4.6A, \ di/dt \leq 300A/\mu s, \ V_{DD} \leq 100V, \ T_J \leq 150^{\circ}C \end{tabular}$
- 4 Pulse width \leq 300 μ s; Duty Cycle \leq 2%
- \odot Total Dose Irradiation with V_{GS} Bias. 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.
- © Total Dose Irradiation with V_{DS} Bias. 80volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

Electrical Characteristics for Each P-Channel Device @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100			V	$V_{GS} = 0V, I_{D} = -1.0mA$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.13		V/°C	Reference to 25°C, I_D = -1.0mA
D	Static Drain-to-Source On-State			1.2	Ω	V _{GS} = -12V, I _{D1} = -2.8A ④
$R_{DS(on)}$	Resistance			0.96	52	V _{GS} = -12V, I _{D2} = -1.8A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -1.0$ mA
Gfs	Forward Transconductance	1.6			S	V _{DS} = -15V, I _{D2} = -1.8A ④
I _{DSS}	Zoro Coto Voltago Drain Current			-10		$V_{DS} = -80V, V_{GS} = 0V$
	Zero Gate Voltage Drain Current			-25	μA	$V_{DS} = -80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse			-100	nA	V _{GS} = -20V
				100	IIA	V _{GS} = 20V
Q_G	Total Gate Charge			11		$I_{D1} = -2.8A$
Q_{GS}	Gate-to-Source Charge			3.0	nC	V _{DS} = -50V
Q_{GD}	Gate-to-Drain ('Miller') Charge			4.2		V _{GS} = -12V
$t_{d(on)}$	Turn-On Delay Time			20		V _{DD} = -50V
tr	Rise Time			24	no	$I_{D1} = -2.8A$
$t_{\text{d(off)}}$	Turn-Off Delay Time			32	ns	$R_G = 7.5\Omega$
t_f	Fall Time			90		V _{GS} = -12V
Ls +L _D	Total Inductance		6.1		nH	Measured from the center of drain pad to center of source pad
C _{iss}	Input Capacitance		377			V _{GS} = 0V
C _{oss}	Output Capacitance		102		pF	$V_{DS} = -25V$
C _{rss}	Reverse Transfer Capacitance		7.0			f = 1.0MHz

Source-Drain Diode Ratings and Characteristics for Each P-Channel Device

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			-2.8	۸	
I _{SM}	Pulsed Source Current (Body Diode) ①	— -11.2 A				
V_{SD}	Diode Forward Voltage			-5.0	>	$T_J=25^{\circ}C, I_S = -2.8A, V_{GS}=0V$
t _{rr}	Reverse Recovery Time			138	ns	$T_J=25^{\circ}C, I_F=-2.8A, V_{DD} \le -50V$
Q _{rr}	Reverse Recovery Charge			555	nC	di/dt = 100A/μs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by $L_S + L_D$)				

Thermal Resistance for Each P-Channel Device

	Parameter	Min.	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case			11.8	°C/\\/
$R_{\theta JA}$	Junction-to-Ambient (Typical socket mount)			60	°C/W

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = -25V, starting T_J = 25°C, L = 17.8mH, Peak I_L = -2.8A, V_{GS} = -12V
- $3 I_{SD} \le -2.8 A$, di/dt $\le -263 A/\mu s$, $V_{DD} \le -100 V$, $T_J \le 150 ^{\circ} C$
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- \odot Total Dose Irradiation with V_{GS} Bias. -12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.
- \odot Total Dose Irradiation with V_{DS} Bias. -80volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, Method 1019, condition A.

Radiation Characteristics

IR HiRel Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR Hirel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table1. Electrical Characteristics for Each N-Ch. Dev.@ Tj = 25°C, Post Total Dose Irradiation \$6

Symbol	Parameter	100 kRads (Si)		300 kRads (Si)		Units	Test Conditions	
		Min.	Max.	Min.	Max.			
BV _{DSS}	Drain-to-Source Breakdown Voltage	100		100		V	$V_{GS} = 0V, I_D = 1.0mA$	
$V_{GS(th)}$	Gate Threshold Voltage	2.0	4.0	2.0	4.0	V	$V_{DS} = V_{GS}$, $I_D = 1.0 \text{mA}$	
I_{GSS}	Gate-to-Source Leakage Forward		100		100	nA	V _{GS} = 20V	
I_{GSS}	Gate-to-Source Leakage Reverse		-100		-100	nA	V _{GS} = -20V	
I _{DSS}	Zero Gate Voltage Drain Current		10		10	μΑ	$V_{DS} = 80V, V_{GS} = 0V$	
R _{DS(on)}	Static Drain-to-Source ④ On-State Resistance (TO-3)		0.27		0.27	Ω	V _{GS} = 12V, I _{D2} = 2.9A	
R _{DS(on)}	Static Drain-to-Source ④ On-State Resistance (MO-036AB)		0.27		0.29	Ω	V _{GS} = 12V, I _{D2} = 2.9A	
V_{SD}	Diode Forward Voltage ④		1.2		1.2	V	$V_{GS} = 0V, I_{S} = 4.6A$	

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area for Each N-Channel Device

LET	Energy	Range	V _{DS} (V)							
(MeV/(mg/cm ²))		(μm)	@V _{GS} =0V	@V _{GS} =-5V	@V _{GS} =-10V	@V _{GS} =-15V	@V _{GS} =-20V			
38 ± 5%	300 ± 7.5%	38 ± 7.5%	100	100	100	100	100			
61 ± 5%	330 ± 7.5%	31 ± 10%	100	100	100	35	25			
84 ± 5%	350 ± 10%	28 ± 7.5%	100	100	80	25				

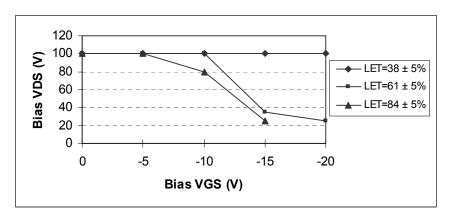


Fig a. Typical Single Event Effect, Safe Operating Area

For Footnotes, refer to the page 2.

Radiation Characteristics

IR HiRel Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at IR Hirel is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table1. Electrical Characteristics for Each P-Ch. Dev. @ Tj = 25°C, Post Total Dose Irradiation \$6

		•						
	Parameter	100 kRa	100 kRads (Si) ¹		300 kRads (Si) ²		Test Conditions	
		Min.	Max.	Min.	Max.	Units		
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100		-100		V	$V_{GS} = 0V, I_{D} = -1.0mA$	
$V_{GS(th)}$	Gate Threshold Voltage	-2.0	-4.0	-2.0	-4.0	V	$V_{DS} = V_{GS}$, $I_D = -1.0$ mA	
I _{GSS}	Gate-to-Source Leakage Forward		-100		-100	nA	V _{GS} = -20V	
I _{GSS}	Gate-to-Source Leakage Reverse		100		100	nA	V _{GS} = 20V	
I _{DSS}	Zero Gate Voltage Drain Current		-10		-10	μA	$V_{DS} = -80V, V_{GS} = 0V$	
R _{DS(on)}	Static Drain-to-Source ④ On-State Resistance (TO-3)		0.916		0.936	Ω	V _{GS} = -12V, I _{D2} = -1.8A	
R _{DS(on)}	Static Drain-to-Source ④ On-State Resistance (MO-036AB)		0.96		0.98	Ω	V _{GS} = -12V, I _{D2} = -1.8A	
V_{SD}	Diode Forward Voltage ④		-5.0		-5.0	V	$V_{GS} = 0V, I_D = -2.8A$	

^{1.} Part number IRHG567110

IR HiRel radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Typical Single Event Effect Safe Operating Area for Each P-Channel Device

LET	Energy	Range	V _{DS} (V)							
(MeV/(mg/cm ²))		(μm)	@V _{GS} =0V	@V _{GS} =5V	@V _{GS} =10V	@V _{GS} =15V	@V _{GS} =20V			
38 ± 5%	270 ± 7.5%	35 ± 7.5%	-100	-100	-100	-100	-100			
61 ± 5%	330 ± 7.5%	30 ± 7.5%	-100	-100	-100	-100	-25			
84 ± 5%	350 ± 7.5%	28 ± 7.5%	-100	-100	-100	-30				

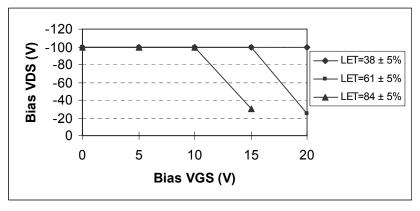


Fig a. Typical Single Event Effect, Safe Operating Area

For Footnotes, refer to the page 3.

^{2.} Part number IRHG563110

N-Channel Q1, Q4

Pre-Irradiation

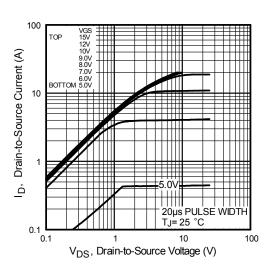


Fig 1. Typical Output Characteristics

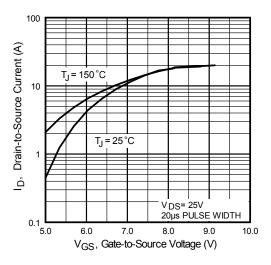


Fig 3. Typical Transfer Characteristics

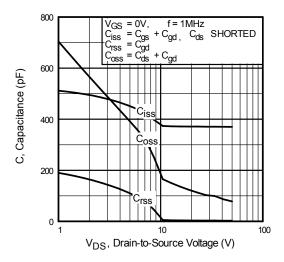


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

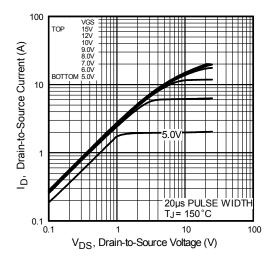


Fig 2. Typical Output Characteristics

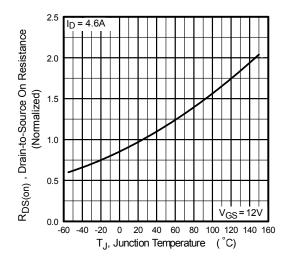


Fig 4. Normalized On-Resistance Vs. Temperature

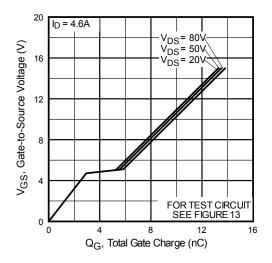
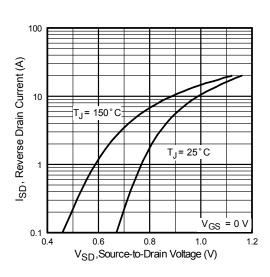
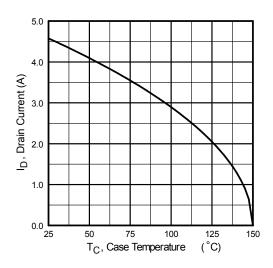



Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

N-Channel Q1, Q4



100 OPERATION IN THIS AREA Drain-to-Source Current (A) 10 $Tc = 25^{\circ}C$ Tj = 150°C Single Pulse 0.1 10 100 1000 V_{DS} , Drain-toSource Voltage (V)

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

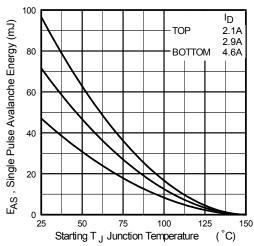


Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

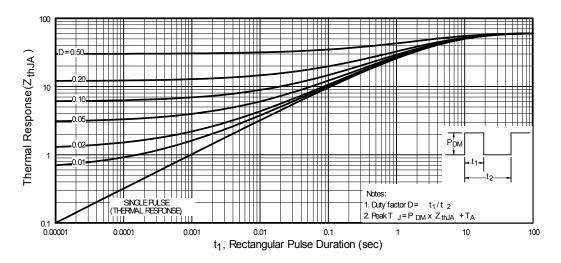


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

N-Channel Q1, Q4

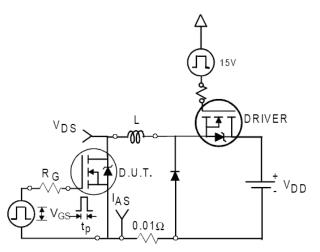


Fig 12a. Unclamped Inductive Test Circuit

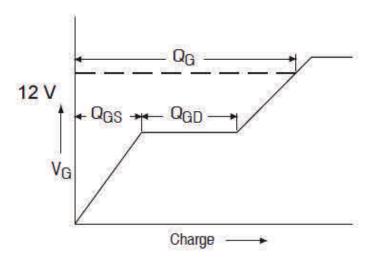


Fig 13a. Gate Charge Waveform

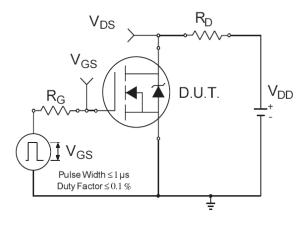


Fig 14a. Switching Time Test Circuit

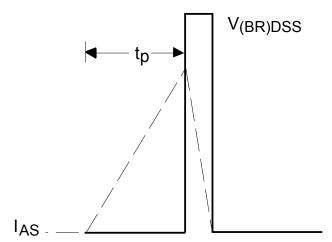


Fig 12b. Unclamped Inductive Waveforms

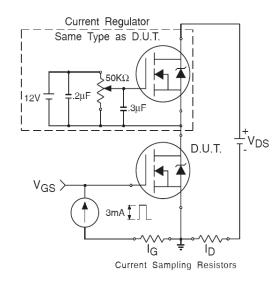


Fig 13b. Gate Charge Test Circuit

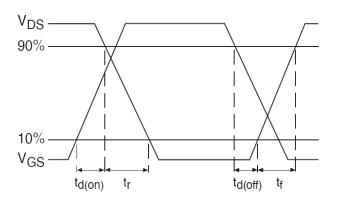


Fig 14b. Switching Time Waveforms

P-Channel Q2, Q3

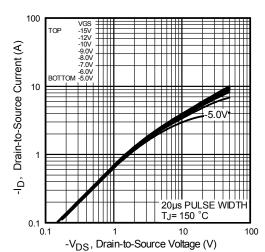


Fig 2. Typical Output Characteristics

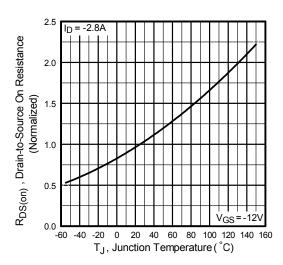


Fig 4. Normalized On-Resistance Vs. Temperature

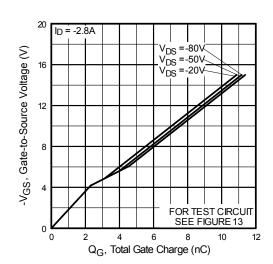


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

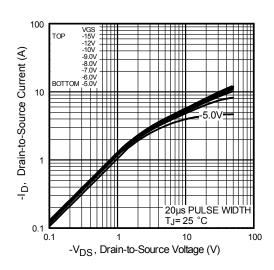


Fig 1. Typical Output Characteristics

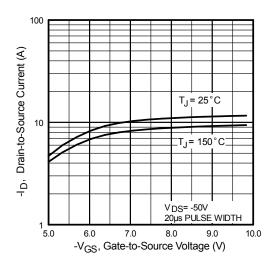


Fig 3. Typical Transfer Characteristics

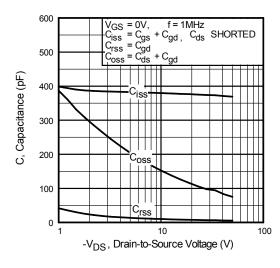


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

100

-I_{SD}, Reverse Drain Current (A)

0.1

1.0

T_{.I}= 150°C

3.0

Fig 7. Typical Source-Drain Diode Forward Voltage

-V_{SD},Source-to-Drain Voltage (V)

4.0

T_{.1}= 25°C

V_{GS} = 0 V

6.0

5.0

P-Channel Q2, Q3

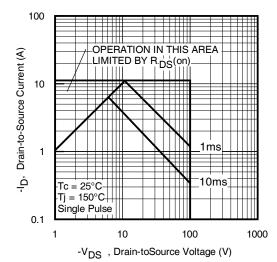


Fig 8. Maximum Safe Operating Area

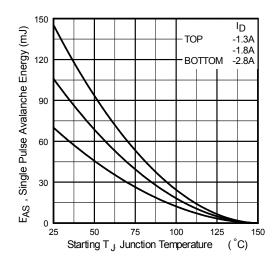



Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

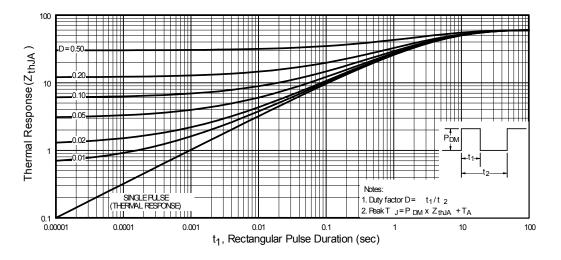


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

P-Channel Q2, Q3

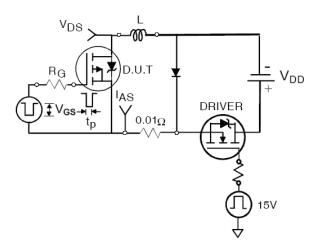


Fig 12a. Unclamped Inductive Test Circuit

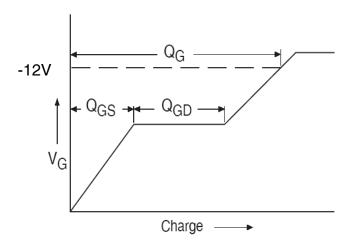


Fig 13a. Basic Gate Charge Waveform

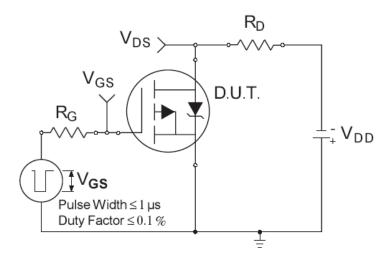


Fig 14a. Switching Time Test Circuit

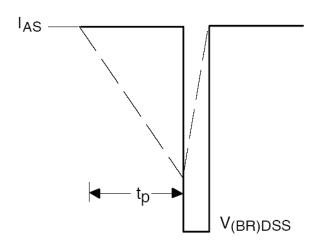


Fig 12b. Unclamped Inductive Waveforms

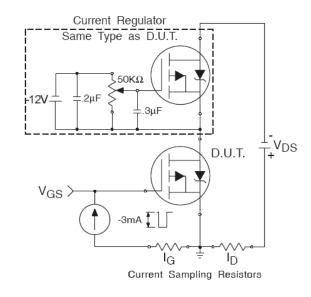


Fig 13b. Gate Charge Test Circuit

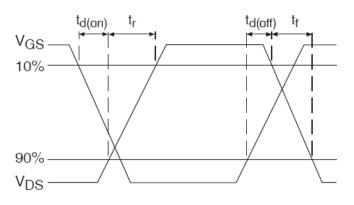
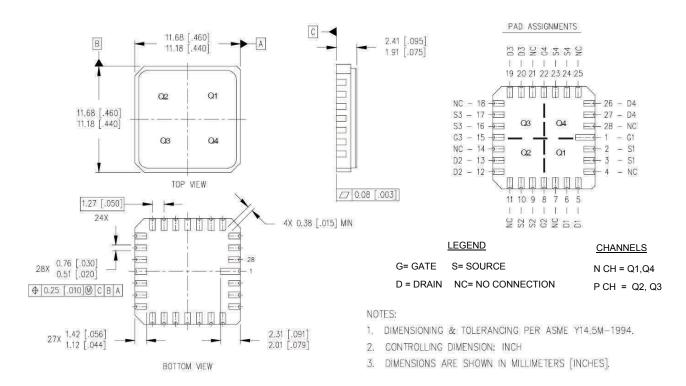



Fig 14b. Switching Time Waveforms

Case Outline and Dimensions — LCC-28

www.infineon.com/irhirel

Infineon Technologies Service Center: USA Tel: +1 (866) 951-9519 and International Tel: +49 89 234 65555

Leominster, Massachusetts 01453, USA Tel: +1 (978) 534-5776

San Jose, California 95134, USA Tel: +1 (408) 434-5000

Data and specifications subject to change without notice.

IMPORTANT NOTICE

The information given in this document shall be in no event regarded as guarantee of conditions or characteristic. The data contained herein is a characterization of the component based on internal standards and is intended to demonstrate and provide guidance for typical part performance. It will require further evaluation, qualification and analysis to determine suitability in the application environment to confirm compliance to your system requirements.

With respect to any example hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind including without limitation warranties on non- infringement of intellectual property rights and any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's product and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of any customer's technical departments to evaluate the suitability of the product for the intended applications and the completeness of the product information given in this document with respect to applications.

For further information on the product, technology, delivery terms and conditions and prices, please contact your local sales representative or go to (www.infineon.com/hirel).

WARNING

Due to technical requirements products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.