PD - 95697

International

IRF7534D1PbF

MOSFET & Schottky Diode

шк

шк

D 🞞

- Lead-Free
- Co-packaged HEXFET[®] power MOSFET and Schottky diode
- Ultra Low On-Resistance
 MOSFET
- Trench technology
- Micro8[™] Footprint
- Available in Tape & Reel

Description

The FETKY family of co-packaged MOSFETs and Schottky diodes offers the designer an innovative, board space saving solution for switching regulator and power management applications. International Rectifier utilizes advanced processing techniques to achieve extremely low on-resistance per silicon area. Combining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications, such as cell phones, PDAs, etc.

 $V_{DSS} = -20V$

 $R_{DS(on)} = 0.055\Omega$

Schottky Vf=0.39V

Micro8™

The Micro8TM package makes an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8TM will allow it to fit easily into extremely thin application environments such as portable electronics

Absolute Maximum Rating

	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	-20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-4.3	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.4	A
IDM	Pulsed Drain Current①	-34	1
P _D @T _A = 25°C	Maximum Power Dissipation ④	1.25	W
P _D @T _A = 70°C	Maximum Power Dissipation ④	0.8	W
	Linear Derating Factor	10	mW/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt 🛛	1.1	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

FETKY

Top View

A 💷

s 🖽

G III

A III

Thermal Resistance

	Parameter	Max.	Units	
Roja	Maximum Junction-to-A	Ambient ④	100	°C/W

Notes:

① Repetitive rating – pulse width limited by max. junction temperature (see Fig. 9)

- ② I_{SD} ≤ -1.2A, di/dt ≤ 100A/µs, V_{DD} ≤ $V_{(BR)DSS}$, T_J ≤ 150°C
- ③ Pulse width \leq 300µs duty cycle \leq 2%

④ When mounted on 1 inch square copper board to approximate typical multi-layer PCB thermal resistance

MOSFET Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
V(BR)DSS	Drain-to-Source Breakdown Voltage	-20			V	V _{GS} = 0V, I _D = -250µA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.055	Ω	V_{GS} = -4.5V, I _D = -4.3A (3)
· •D3(01)				0.105	52	V_{GS} = -2.5V, I _D = -3.4A (3)
V _{GS(th)}	Gate Threshold Voltage	-0.6		-1.2	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
g fs	Forward Transconductance	2.5			S	V_{DS} = -10V, I_{D} = -0.8A
I	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -16V, V_{GS} = 0V$
DSS	Drain-to-Source Leakage Current			-25	μA	V_{DS} = -16V, V_{GS} = 0V, T_{J} = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			-100	• nA	V _{GS} = -12V
.699	Gate-to-Source Reverse Leakage			100		V _{GS} = 12V
Qg	Total Gate Charge		10	15		I _D = -3A
Qgs	Gate-to-Source Charge		2.1	3.1	nC	V _{DS} = -10V
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.5	3.7		$V_{GS} = -5V$
t _{d(on)}	Turn-On Delay Time		10			V _{DD} = -10V
t _r	Rise Time		46			$I_{D} = -2A$
t _{d(off)}	Turn-Off Delay Time		60		ns	$R_G = 6.0\Omega$
t _f	Fall Time	—	64			$R_{D} = 5\Omega$, 3
Ciss	Input Capacitance		1066			V _{GS} = 0V
Coss	Output Capacitance		402		pF	V _{DS} = -10V
Crss	Reverse Transfer Capacitance		125	—		f = 1.0MHz

MOSFET Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current(Body Diode)			-1.3	•	
I _{SM}	Pulsed Source Current (Body Diode)			-34	A	
V_{SD}	Body Diode Forward Voltage			-1.2	V	T_J = 25°C, I_S = -1.6A, V_{GS} = 0V
t _{rr}	Reverse Recovery Time (Body Diode)		54	82	ns	T _J = 25°C, I _F = -2.5A
Q _{rr}	Reverse Recovery Charge		41	61	nC	di/dt = 100A/µs ③

Schottky Diode Maximum Ratings

	Parameter	Max.	Units	Conditions		
I _{F(av)}	Max. Average Forward Current	1.9	A	50% Duty Cycle. Rectangular Wave, T _A = 25°C		
		1.4	1 ^	See Fig.13	T _A = 70°C	
I _{SM}	Max. peak one cycle Non-repetitive	120		5µs sine or 3µs Rect. pulse	Following any rated	
	Surge current	11	A	10ms sine or 6ms Rect. pulse	load condition &	
					with V _{RRM} applied	

Schottky Diode Electrical Specifications

	Parameter	Max.	Units	Conditions
V_{FM}	Max. Forward voltage drop	0.50		I _F = 1.0A, T _J = 25°C
		0.62		I _F = 2.0A, T _J = 25°C
		0.39	V	I _F = 1.0A, T _J = 125°C
		0.57		I _F = 2.0A, T _J = 125°C .
I _{RM}	Max. Reverse Leakage current	0.02	mA	$V_R = 20V$ $T_J = 25^{\circ}C$
		8		T _J = 125°C
Ct	Max. Junction Capacitance	92	рF	V_R = 5Vdc (100kHz to 1 MHz) 25°C
d∨/dt	Max. Voltage Rate of Charge	3600	V/ µs	Rated V _R

(HEXFET is the reg. TM for International Rectifier Power MOSFET's)

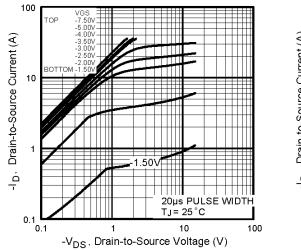
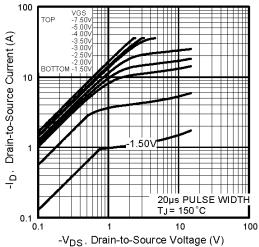



Fig 1. Typical Output Characteristics

Power MOSFET Characteristics

Fig 2. Typical Output Characteristics

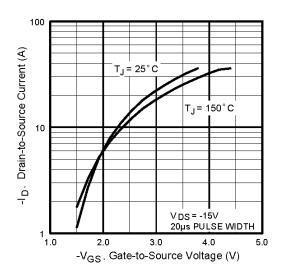


Fig 3. Typical Transfer Characteristics

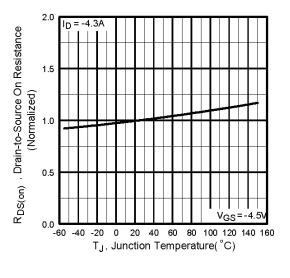
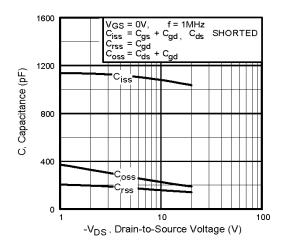



Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

Power MOSFET Characteristics

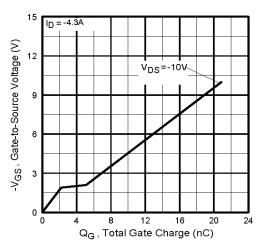


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

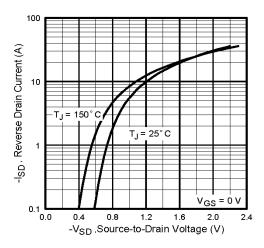


Fig 7. Typical Source-Drain Diode Forward Voltage

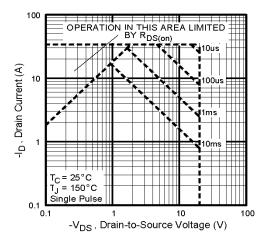
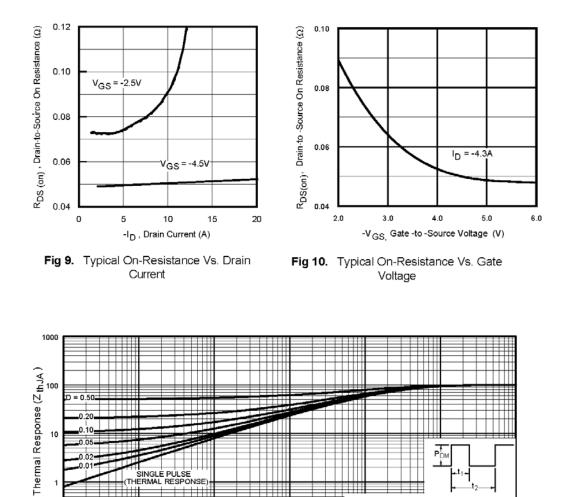


Fig 8. Maximum Safe Operating Area

PDN

 $+ T_A$

100


10

Notes:

1

1. Duty factor D = t₁ / t₂ 2. Peak TJ = P DM x ZthJA

Power MOSFET Characteristics

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

0.1

t1, Rectangular Pulse Duration (sec)

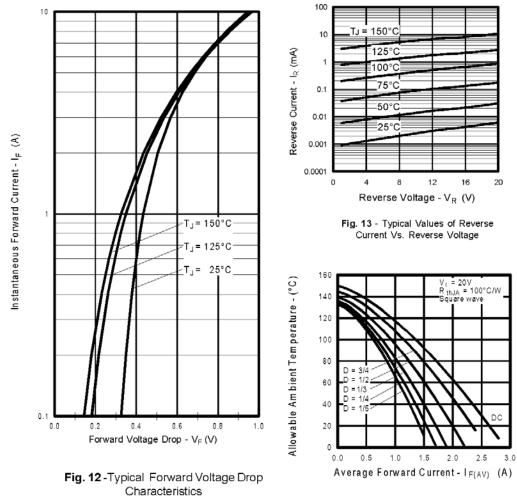
www.irf.com

10

1

0.1 0.0001

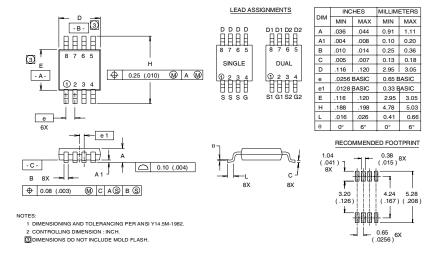
n n


SINGLE PULSE (THERMAL RESPONSE)

0.001

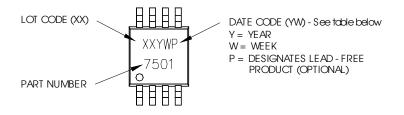
0.01

International



Schottky Diode Characteristics

Fig.14 - Maximum Allowable Ambient Temp. Vs. Forward Current


Micro8 Package Outline

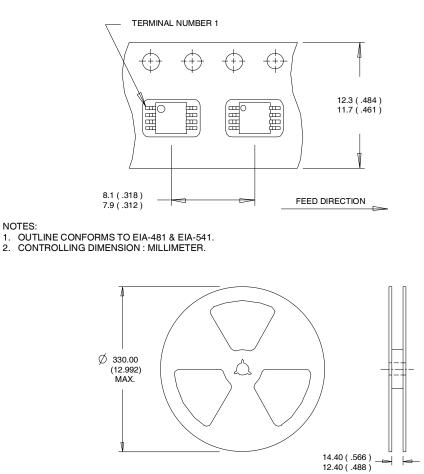
Dimensions are shown in milimeters (inches)

Micro8 Part Marking Information

EXAMPLE: THIS IS AN IRF7501

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

WW = (27-52) IF PRECEDED BY A LETTER WORK


YEAR	Y	WORK WEEK	W
2001	1	01	A
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5	I.	1
2006	6		
2007	7		
2008	8		
2009	9		
2010	0	24	Х
		25	Y
		26	Z

YEAR	Υ	WEEK	W
2001	А	27	А
2002	В	28	В
2003	С	29	С
2004	D	30	D
2005	E	1	
2006	F		
2007	G		
2008	Н	1	
2009	J		
2010	Κ	50	Х
		51	Y
		52	Ζ

International

Micro8 Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

> Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site.

> > International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/04 8