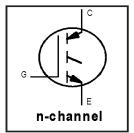
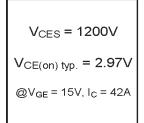
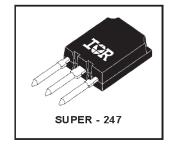
International Rectifier

IRG4PSH71KPbF

INSULATED GATE BIPOLAR TRANSISTOR


Short Circuit Rated UltraFast IGBT


Features


- Hole-less clip/pressure mount package compatible with TO-247 and TO-264, with reinforced pins
- High short circuit rating IGBTs, optimized for motorcontrol
- Minimum switching losses combined with low conduction losses
- Tightest parameter distribution
- · Creepage distance increased to 5.35mm
- Lead-Free

Benefits

- · Highest current rating IGBT
- Maximum power density, twice the power handling of the TO-247, less space than TO-264

Absolute Maximum Ratings

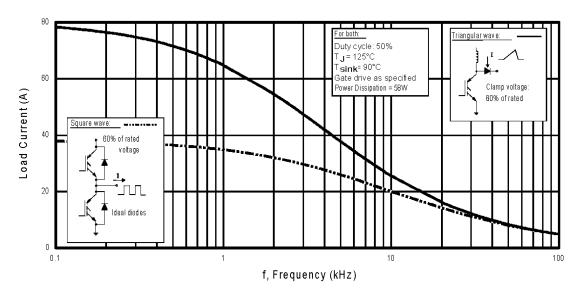
	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	78	
I _C @ T _C = 100°C	Continuous Collector Current	42	
I _{CM}	Pulsed Collector Current ①	156] A
I _{LM}	Clamped Inductive Load Current @	156	
t _{SC}	Short Circuit Withstand Time	10	μs
V _{GE}	Gate-to-Emitter Voltage	± 20	V
E _{ARV}	Reverse Voltage Avalanche Energy ③	170	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	350	w
P _D @ T _C = 100°C	Maximum Power Dissipation	140	
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm from case)	

Thermal Resistance\ Mechanical

	Parameter	Min.	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case			0.36	
R _{OCS}	Case-to-Sink, flat, greased surface		0.24		°C/W
Reja	Junction-to-Ambient, typical socket mount			38	
	Recommended Clip Force	20.0(2.0)			N (kgf)
	Weight		6 (0.21)		g (oz)

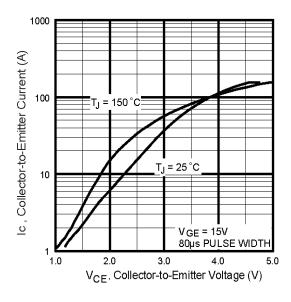
Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Мах.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200			V	$V_{GE} = 0V$, $I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage @	18			٧	V_{GE} = 0V, I_{C} = 1.0A	
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage		1.1		V/°C	$V_{GE} = 0V$, $I_{C} = 10mA$	
			2.97	3.9		I _C = 42A	V _{GE} = 15V
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage		3.44		V	I _C = 78A	See Fig.2, 5
			2.60			I _C = 42A , T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
ΔV _{GE(th)} /ΔT _J	Temperature Coeff. of Threshold Voltage		-12		mV/°C	$V_{CE} = V_{GE}, I_{C} = 1.5 \text{mA}$	
g fe	Forward Transconductance (5)	25	38		S	$V_{CE} = 50V$, $I_{C} = 42A$	
Ices	Zero Gate Voltage Collector Current			500	μΑ	V _{GE} = 0V, V _{CE} = 1200V	
,CES				2.0		$V_{GE} = 0V, V_{CE} = 10V, T$	J = 25°C
				5.0	mΑ	V _{GE} = 0V, V _{CE} = 1200V	T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current			±100	nΑ	V _{GE} = ±20V	


Switching Characteristics @ T_J = 25°C (unless otherwise specified)

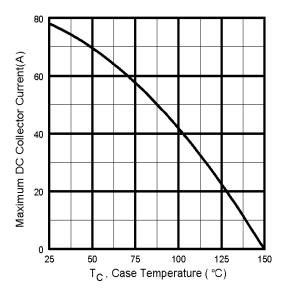
	Parameter	Min.	Тур.	Max.	Units	Conditions
Qa	Total Gate Charge (turn-on)	_	410	610		I _C = 42A
Qge	Gate - Emitter Charge (turn-on)	_	47	70	nC	V _{CC} = 400V See Fig.8
Qgc	Gate - Collector Charge (turn-on)	_	145	220		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	45	_		
tr	Rise Time	_	38	_	ns	$T_{\text{J}} = 25^{\circ}\text{C}$
t _{d(off)}	Turn-Off Delay Time	_	220	340	113	$I_{\mathbb{C}}$ = 42A, $V_{\mathbb{CC}}$ = 960V
t _f	Fall Time	_	160	250		V_{GE} = 15V, R_{G} = 5.0 Ω
Eon	Turn-On Switching Loss	_	2.35	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	_	3.14	_	mJ	See Fig. 9,10,14
Ets	Total Switching Loss	_	5.49	8.3		
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	V _{CC} = 720V, T _J = 125°C
						V_{GE} = 20V, R_G = 5.0 Ω
t _{d(on)}	Turn-On Delay Time	_	42	_		T _J = 150°C
tr	Rise Time	_	41	_	ns	$I_{C} = 42A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	_	460	_	115	V_{GE} = 15V, R_{G} = 5.0 Ω
tf	Fall Time	_	250	_		Energy losses include "tail"
Ets	Total Switching Loss	_	11.5	_	mJ	See Fig. 10,11,14
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	5770	_		V _{GE} = 0V
Coes	Output Capacitance	_	400	_	pF	$V_{CC} = 30V$ See Fig. 7
Cres	Reverse Transfer Capacitance	_	100	_		f = 1.0 MHz

Notes:


2

- \odot Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- ~~ V $_{CC}$ = 80%(V $_{CES}),~V_{GE}$ = 20V, L = 10 $\mu H,~R_G$ = 5.0 $\Omega,$ (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature
- ④ Pulse width ≤ 80µs; duty factor ≤ 0.1%
- S Pulse width 5.0µs, single shot

Fig. 1 - Typical Load Current vs. Frequency (For square wave, $I=I_{RMS}$ of fundamental; for triangular wave, $I=I_{PK}$)


1000

 $T_J = 150 \,^{\circ}\text{C}$ $T_J = 150 \,^{\circ}\text{C}$ $T_J = 25 \,^{\circ}\text{C}$

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

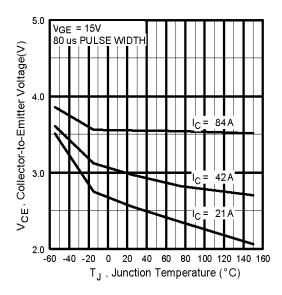
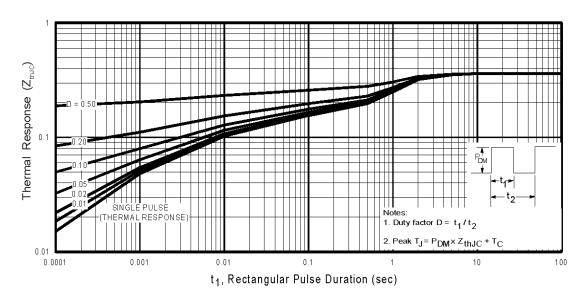
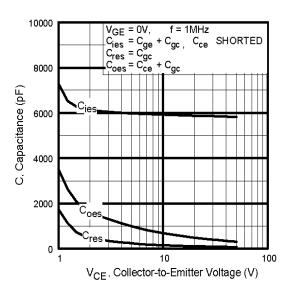
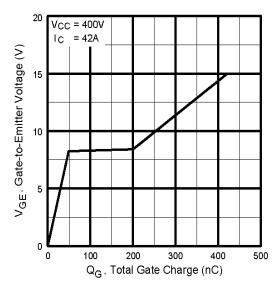


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. JunctionTemperature


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4PSH71KPbF

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

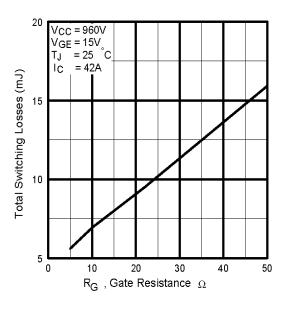


Fig. 9 - Typical Switching Losses vs. Gate Resistance

www.irf.com

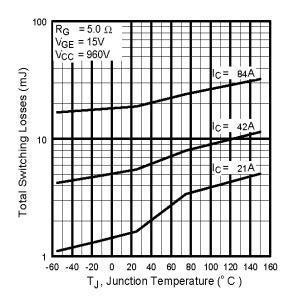
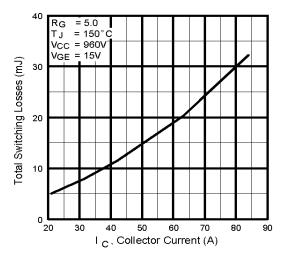
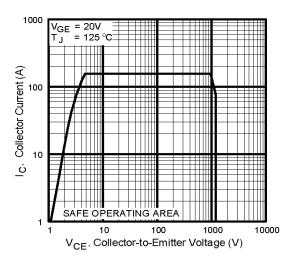
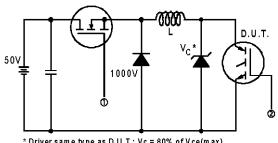




Fig. 10 - Typical Switching Losses vs. Junction Temperature

5

International TOR Rectifier



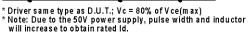

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

International TOR Rectifier

IRG4PSH71KPbF

0 - 960V 480µF 960V 0

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

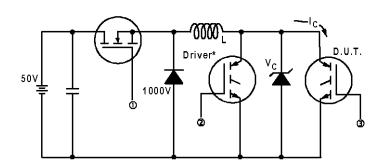


Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 960V

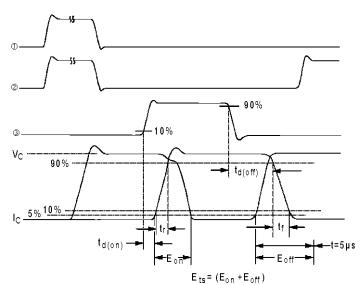
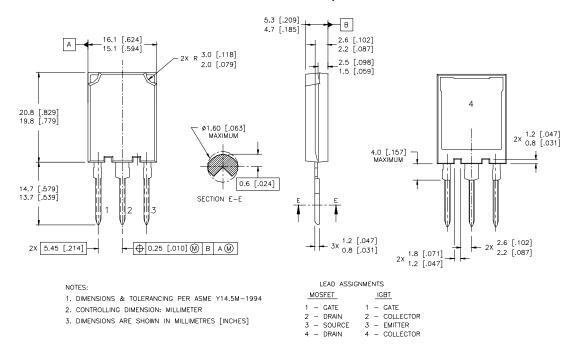
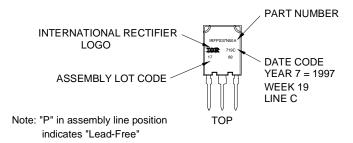



Fig. 14b - Switching Loss Waveforms


International TOR Rectifier

Case Outline and Dimensions — Super-247

Super-247 (TO-274AA) Part Marking Information

EXAMPLE: THIS IS AN IRFPS37N50A WITH ASSEMBLY LOT CODE 1789 ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 09/04