PG-TO-247-3

GCE

High Speed IGBT in NPT-technology

- 30% lower E_{off} compared to previous generation
- Short circuit withstand time 10 μs
- Designed for operation above 30 kHz
- NPT-Technology for 600V applications offers:
 - parallel switching capability
 - moderate Eoff increase with temperature
 - very tight parameter distribution
- High ruggedness, temperature stable behaviour •
- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC¹ for target applications
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ •

Туре	V _{CE}	I _c	E_{off}	Tj	Marking	Package
SKW30N60HS	600V	30	480µJ	150°C	K30N60HS	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current	I _C		А
$T_{\rm C}$ = 25°C		41	
$T_{\rm C}$ = 100°C		30	
Pulsed collector current, t_p limited by T_{jmax}	I _{Cpuls}	112	
Turn off safe operating area	-	112	
$V_{CE} \le 600 V, \ T_j \le 150^{\circ} C$			
Diode forward current	I _F		
$T_{\rm C} = 25^{\circ}{\rm C}$		41	
$T_{\rm C}$ = 100°C		28	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	112	
Gate-emitter voltage static transient ($t_p < 1\mu s$, D<0.05)	V _{GE}	±20 ±30	V
Short circuit withstand time ²⁾	t _{sc}	10	μs
V_{GE} = 15V, $V_{\text{CC}} \le 600$ V, $T_j \le 150^{\circ}$ C			
Power dissipation	P _{tot}	250	W
$T_{\rm C}$ = 25°C			
Operating junction and storage temperature	T _j , T _{stg}	-55+150	°C
Time limited operating junction temperature for $t < 150h$	T _{j(tl)}	175	
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

 1 J-STD-020 and JESD-022 $^{2)}$ Allowed number of short circuits: <1000; time between short circuits: <1s.

Downloaded from Arrow.com.

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic		I.		
IGBT thermal resistance,	$R_{\rm thJC}$		0.5	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		1.29	
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Devementer	Question	Conditions		Value		11	
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit	
Static Characteristic							
Collector-emitter breakdown voltage	V _{(BR)CES}	$V_{\rm GE}$ =0V, $I_{\rm C}$ =500 μ A	600	-	-	V	
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE}$ = 15V, $I_{\rm C}$ =30A					
		T _j =25°C		2.8	3.15		
		<i>T</i> _j =150°C		3.5	4.00		
Diode forward voltage	V _F	V _{GE} =0V, <i>I</i> _F =30A					
		<i>T</i> _j =25°C		1.55	2.05		
		<i>T</i> _j =150°C	-	1.55	2.05		
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C} = 700 \mu {\rm A}, V_{\rm CE} = V_{\rm GE}$	3	4	5		
Zero gate voltage collector current	I _{CES}	$V_{\rm CE}$ =600V, $V_{\rm GE}$ =0V				μA	
		<i>T</i> _j =25°C	-	-	40		
		<i>T</i> _j =150°C	-	-	3000		
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 V, V_{\rm GE} = 20 V$	-	-	100	nA	
Transconductance	g_{fs}	V _{CE} =20V, / _C =30A	-	20		S	

Dynamic Characteristic

Input capacitance	Ciss	V _{CE} =25V,	-	1500	pF
Output capacitance	Coss	V _{GE} =0V,	-	203	
Reverse transfer capacitance	Crss	f=1MHz	-	92	
Gate charge	Q _{Gate}	V _{CC} =480V, <i>I</i> _C =30A	-	141	nC
		V _{GE} =15V			
Internal emitter inductance	LE		-	13	nH
measured 5mm (0.197 in.) from case					
Short circuit collector current ¹⁾	I _{C(SC)}	V_{GE} =15V, t_{SC} ≤10µs V_{CC} ≤ 600V, T_{j} ≤ 150°C	-	220	A

 $^{1)}$ Allowed number of short circuits: <1000; time between short circuits: >1s.

Switching Characteristic, Inductive Load, at T_j =25 °C

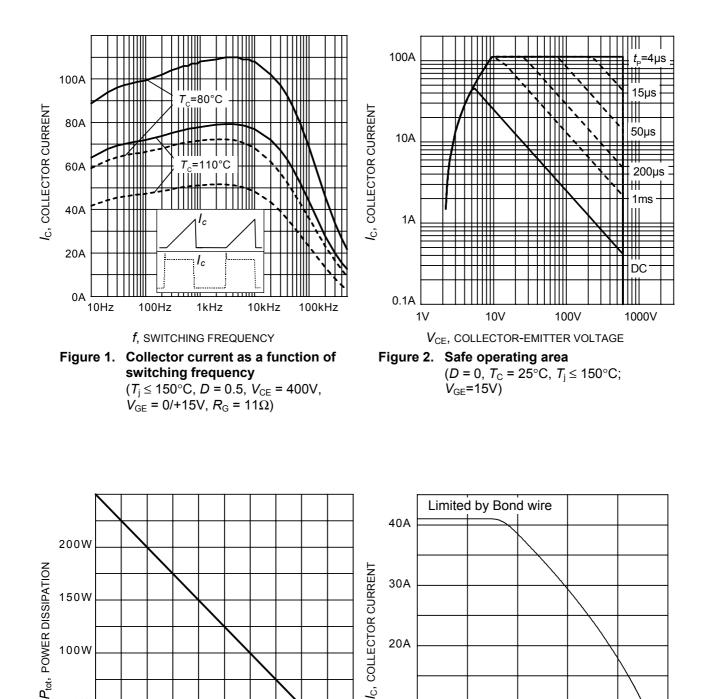
Parameter	Symbol	Conditions	Value			11
Parameter	Symbol	Conditions	min.	typ.	max.	– Unit
IGBT Characteristic	-					
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =25°C, <i>V</i> _{CC} =400V, <i>I</i> _C =30A,	-	20		ns
Rise time	t _r		-	21		
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G =11Ω	-	250		
Fall time	t _f	$L_{\sigma}^{(2)} = 60 \text{ nH},$	-	25		
Turn-on energy	Eon	$C_{\sigma}^{(2)} = 40 \text{ pF}$ Energy losses include	-	0.60		mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.55		
Total switching energy	E _{ts}	reverse recovery.	-	1.15		

Anti-Parallel Diode Characteristic

Diode reverse recovery time	t _{rr}	<i>T</i> _j =25°C,	-	125	ns
	ts	V _R =400V, I _F =30A,	-	20	
	t _F	<i>di</i> _F / <i>dt</i> =1100A/µs	-	105	
Diode reverse recovery charge	Q _{rr}		-	0.82	μC
Diode peak reverse recovery current	I _{rrm}		-	17	A
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	580	A/μs

 $^{2)}$ Leakage inductance L $_{\sigma}$ and Stray capacity C $_{\sigma}$ due to test circuit in Figure E.

Switching Characteristic, Inductive Load, at T_j =150 °C


Parameter	Symbol	Conditions		Value		Unit
Farameter	Symbol	Conditions	min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =150°C	-	16		ns
Rise time	tr	$V_{\rm CC} = 400 V, I_{\rm C} = 30 A,$	-	13		
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G = 1.8Ω	-	122		
Fall time	t _f	$L_{\sigma}^{(1)} = 60 \text{ nH},$	-	29		
Turn-on energy	Eon	$C_{\sigma}^{(1)} = 40 \text{ pF}$	-	0.78		mJ
Turn-off energy	E _{off}	Energy losses include "tail" and diode	-	0.48]
Total switching energy	Ets	reverse recovery.	-	1.26		
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =150°C	-	20		ns
Rise time	tr	$V_{\rm CC} = 400 V, I_{\rm C} = 30 A,$	-	19		
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G = 11Ω	-	274		
Fall time	t _f	$L_{\sigma}^{(1)} = 60 \text{ nH},$ $C_{\sigma}^{(1)} = 40 \text{ pF}$ Energy losses include "tail" and diode	-	27		
Turn-on energy	Eon		-	0.91		mJ
Turn-off energy	E _{off}		-	0.70		1
Total switching energy	Ets	reverse recovery.	-	1.61		1

Anti-Parallel Diode Characteristic

Diode reverse recovery time	t _{rr}	<i>T</i> _j =150°C	-	190	ns
	ts	V _R =400V, I _F =30A,	-	30	
	t _F	di _F /dt=1250A/µs	-	160	
Diode reverse recovery charge	Q _{rr}		-	2.0	μC
Diode peak reverse recovery current	I _{rrm}		-	24	A
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	480	A/μs

 $^{1)}$ Leakage inductance L $_{\sigma}$ and Stray capacity C $_{\sigma}$ due to test circuit in Figure E.

50°C

 $(T_{\rm j} \le 150^{\circ}{\rm C})$

75°C

 $T_{\rm C}$, CASE TEMPERATURE

Figure 3. Power dissipation as a function of

case temperature

100°C

125°C

5

10A

0A

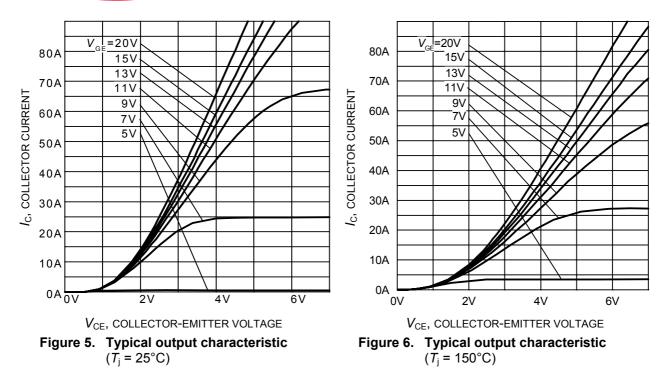
25°C

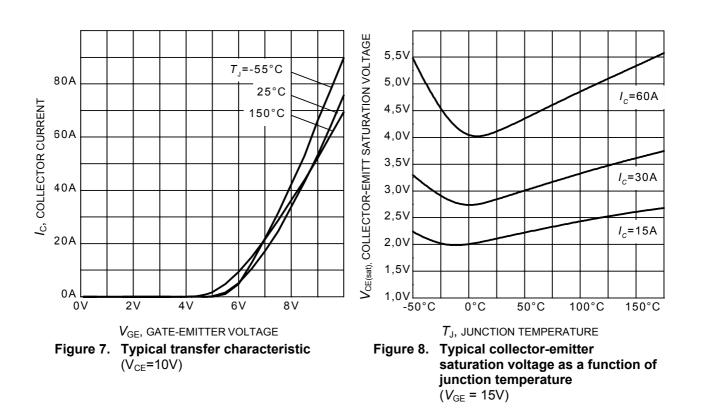
75°C

 $T_{\rm C}$, CASE TEMPERATURE

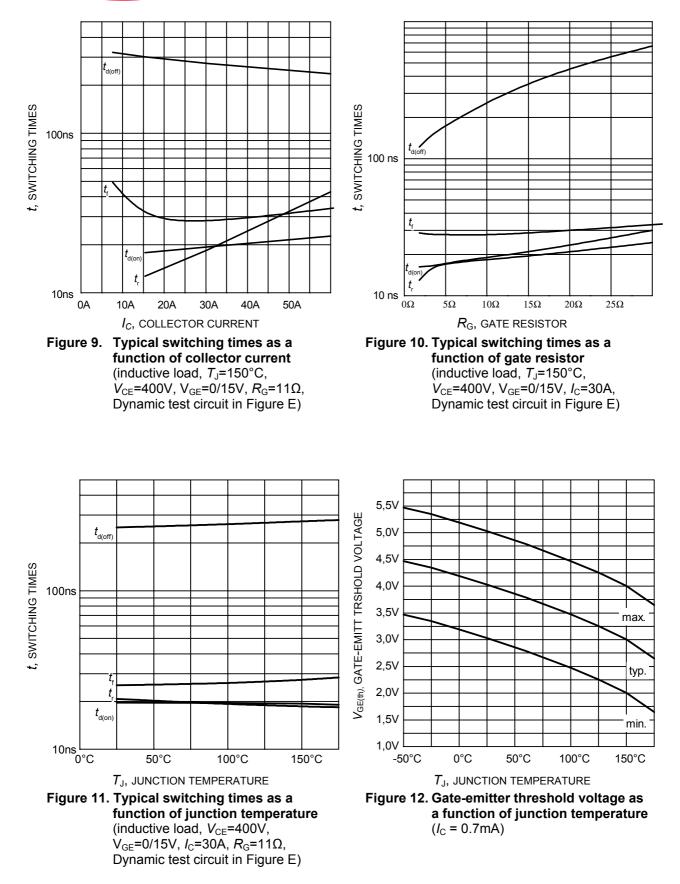
Figure 4. Collector current as a function of

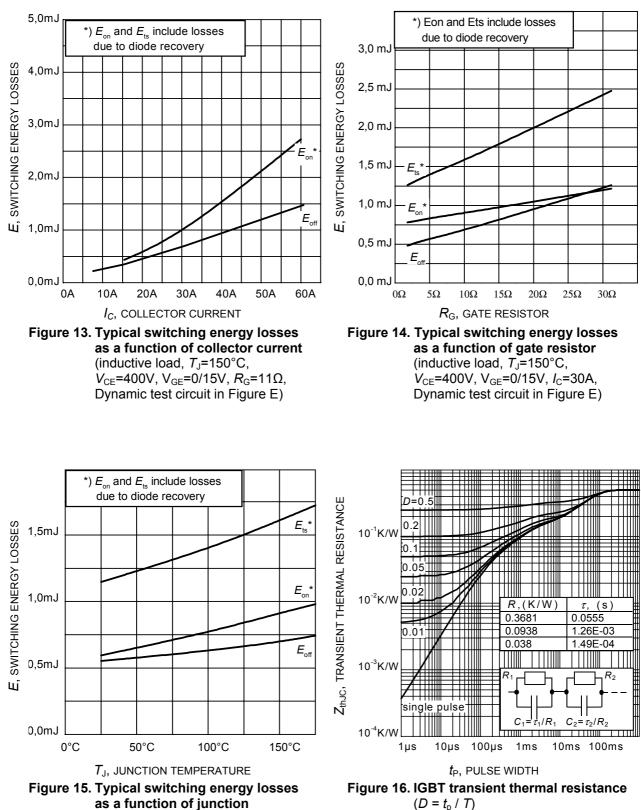
case temperature ($V_{GE} \le 15V$, $T_i \le 150^{\circ}C$)

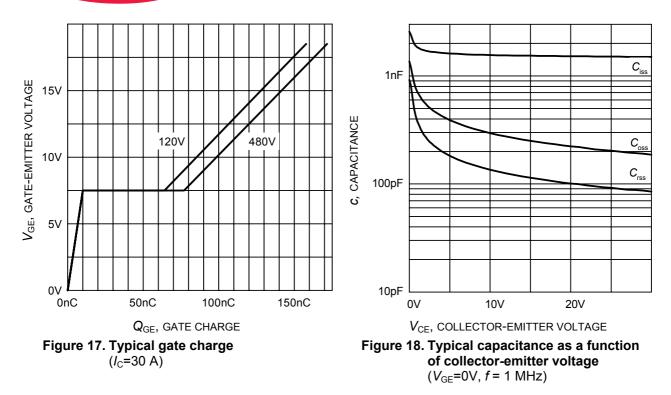

125°C

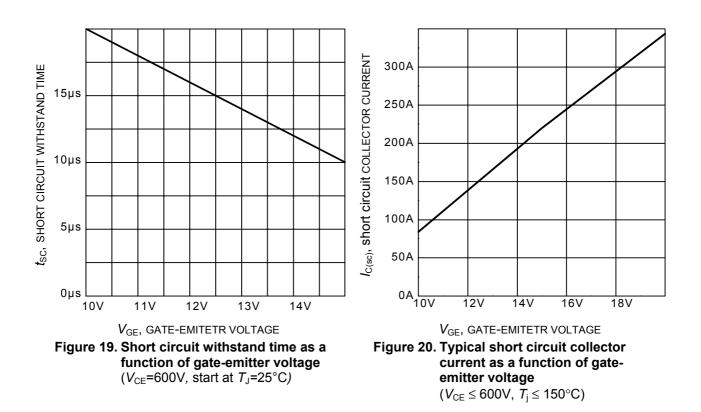

50W

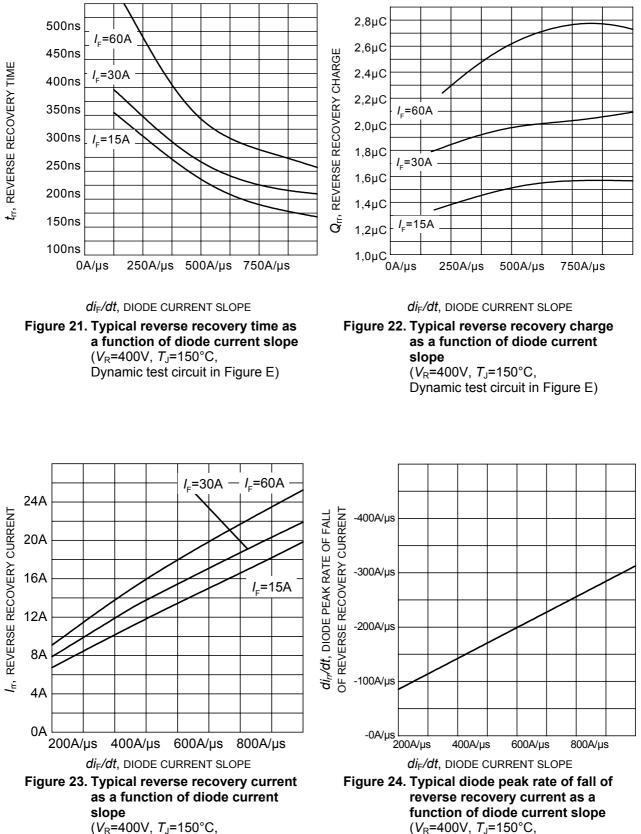
0W

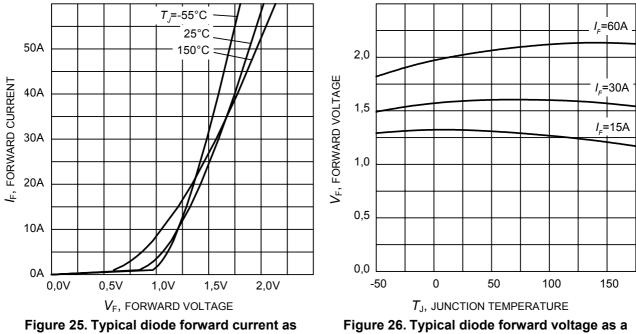

25°C

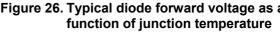



Downloaded from Arrow.com.

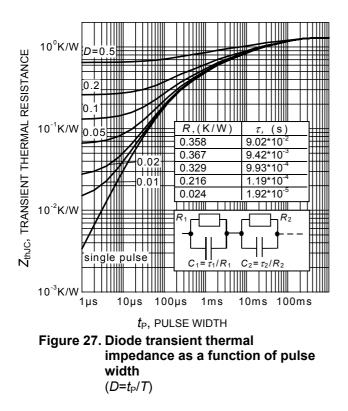



(inductive load, V_{CE} =400V, V_{GE}=0/15V, I_C =30A, R_G =11 Ω , Dynamic test circuit in Figure E)




Dynamic test circuit in Figure E)

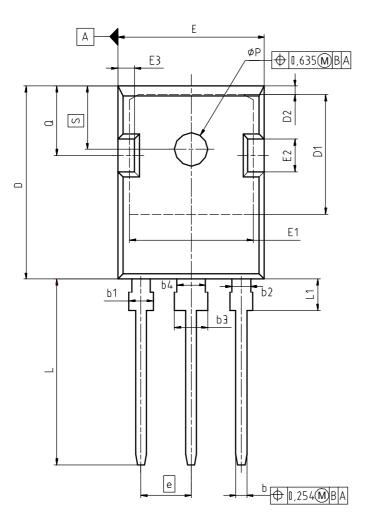
Dynamic test circuit in Figure E)



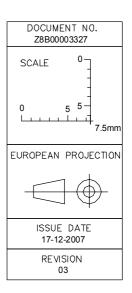
a function of forward voltage

Rev. 2.2

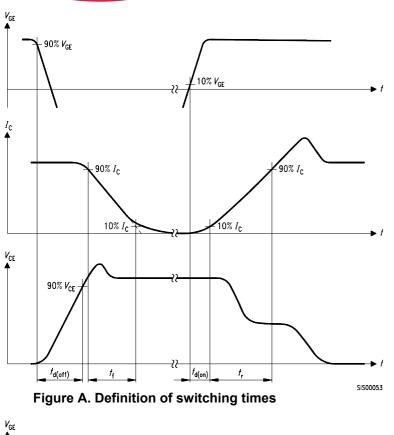
Sep 08



Power Semiconductors



PG-TO247-3



		A	ł
B	A2	┝╼	
_			
		/	
		Ħ	
		H	
	-		<u> </u>
	A1]	
7			

DIM	MILLIM	ETERS	INCHES		
L/IIVI	MIN	MAX	MIN	MAX	
A	4.90	5.16	0.193	0.203	
A1	2.27	2.53	0.089	0.099	
A2	1.85	2.11	0.073	0.083	
Ь	1.07	1.33	0.042	0.052	
b1	1.90	2.41	0.075	0.095	
b2	1.90	2.16	0.075	0.085	
b3	2.87	3.38	0.113	0.133	
Ь4	2.87	3.13	0.113	0.123	
С	0.55	0.68	0.022	0.027	
D	20.82	21.10	0.820	0.831	
□1	16.25	17.65	0.640	0.695	
D2	1.05	1.35	0.041	0.053	
E	15.70	16.03	0.618	0.631	
E1	13.10	14.15	0.516	0.557	
E2	3.68	5.10	0.145	0.201	
E3	1.68	2.60	0.066	0.102	
e	5.	44	0.2	214	
N		3		3	
L	19.80	20.31	0.780	0.799	
L1	4.17	4.47	0.164	0.176	
øP	3.50	3.70	0.138	0.146	
Q	5.49	6.00	0.216	0.236	
S	6.04	6.30	0.238	0.248	

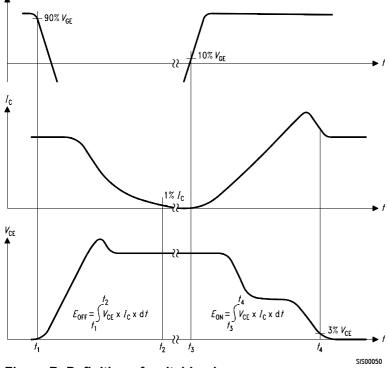


Figure B. Definition of switching losses

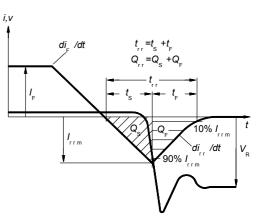


Figure C. Definition of diodes switching characteristics

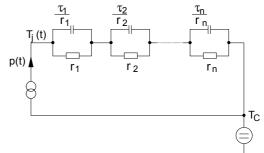


Figure D. Thermal equivalent circuit

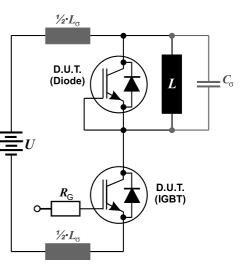


Figure E. Dynamic test circuit Leakage inductance L_{σ} =60nH and Stray capacity C_{σ} =40pF.

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.