

Reverse Conducting IGBT with monolithic body diode

Features:

- 1.5V typical saturation voltage of IGBT
- Trench and Fieldstop technology for 900 V applications offers :
 - very tight parameter distribution
 - high ruggedness, temperature stable behavior
 - easy parallel switching capability due to positive
 - temperature coefficient in $V_{CE(sat)}$
- Low EMI
- Qualified according to JEDEC¹ for target applications
- Application specific optimisation of inverse diode
- Pb-free lead plating; RoHS compliant

Applications:

- Microwave Oven
- Soft Switching Applications for ZCS

G	ΎΕ
	74
PG-TO-247-3	GC

IHW30N90R 900V 30A 1.5V 175°C H30R90 PG-TO-247-3	Туре	V _{CE}	I _c	V _{CE(sat), Tj=25°C}	T _{j,max}	Marking	Package
	IHW30N90R	900V	30A	1.5V	175°C	H30R90	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	900	V
DC collector current	I _C		А
$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 100^{\circ}{\rm C}$		60 30	
Pulsed collector current, t_p limited by T_{jmax}	<i>I</i> _{Cpuls}	90	
Turn off safe operating area $V_{CE} \le 900V$, $T_j \le 175^{\circ}C$	-	90	
Diode forward current	I _F		
$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 100^{\circ}{\rm C}$		60 30	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	90	
Gate-emitter voltage	V _{GE}	±20	V
Transient Gate-emitter voltage ($t_p < 5 \text{ ms}$)		±25	
Power dissipation, $T_{\rm C}$ = 25°C	P _{tot}	454	W
Operating junction temperature	Tj	-40+175	°C
Storage temperature	T _{stg}	-55+175	°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

¹ J-STD-020 and JESD-022

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		0.33	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		0.33	
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

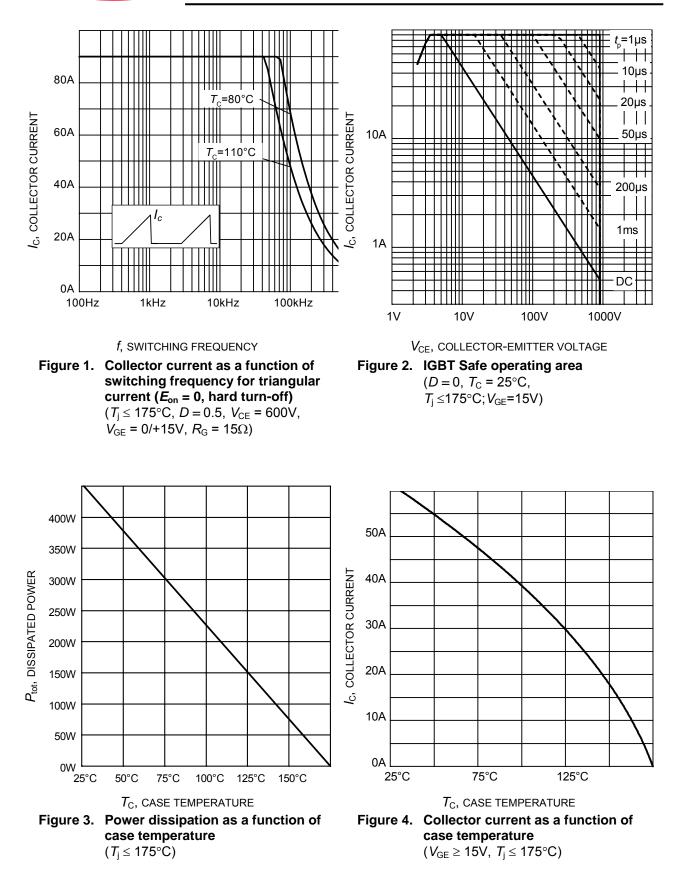
Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value			11
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	V_{GE} =0V, I_{C} =0.5mA	900	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE}$ = 15V, $I_{\rm C}$ =30A				1
		<i>T</i> _j =25°C	-	1.5	1.7	
		<i>T</i> _j =150°C	-	1.6	-	
		<i>T</i> _j =175°C	-	1.7	-	
Diode forward voltage	V _F	V _{GE} =0V, <i>I</i> _F =30A				1
		<i>T</i> _j =25°C	-	1.4	1.6	
		<i>T</i> _j =150°C	-	1.4	-	
		<i>T</i> _j =175°C	-	1.45	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C} = 700 \mu {\rm A}, V_{\rm CE} = V_{\rm GE}$	5.1	5.8	6.4	1
Zero gate voltage collector current	I _{CES}	V _{CE} =900V, V _{GE} =0V				μA
		<i>T</i> _j =25°C	-	-	5	
		<i>T</i> _j =150°C	-	-	2500	
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 V, V_{\rm GE} = 20 V$	-	-	600	nA

Dynamic Characteristic

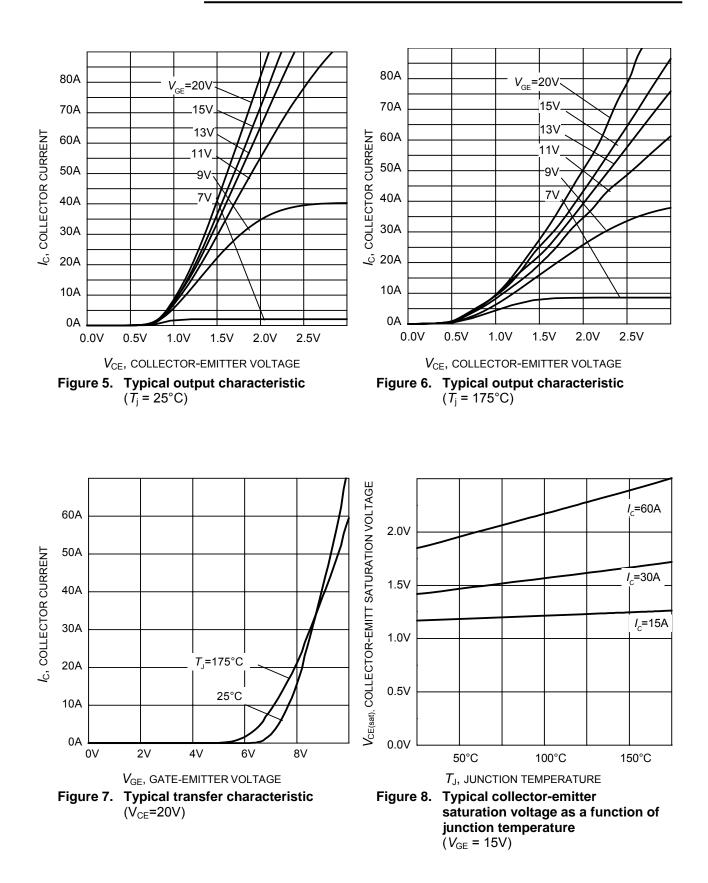
Input capacitance	Ciss	V _{CE} =25V,	-	2889	-	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	83	-	
Reverse transfer capacitance	Crss	f=1MHz	-	79	-	
Gate charge	Q _{Gate}	V _{CC} =720V, <i>I</i> _C =30A	-	200	-	nC
		V _{GE} =15V				
Internal emitter inductance	L _E		-	13	-	nH
measured 5mm (0.197 in.) from case						

Switching Characteristic, Inductive Load, at Tj=25 °C

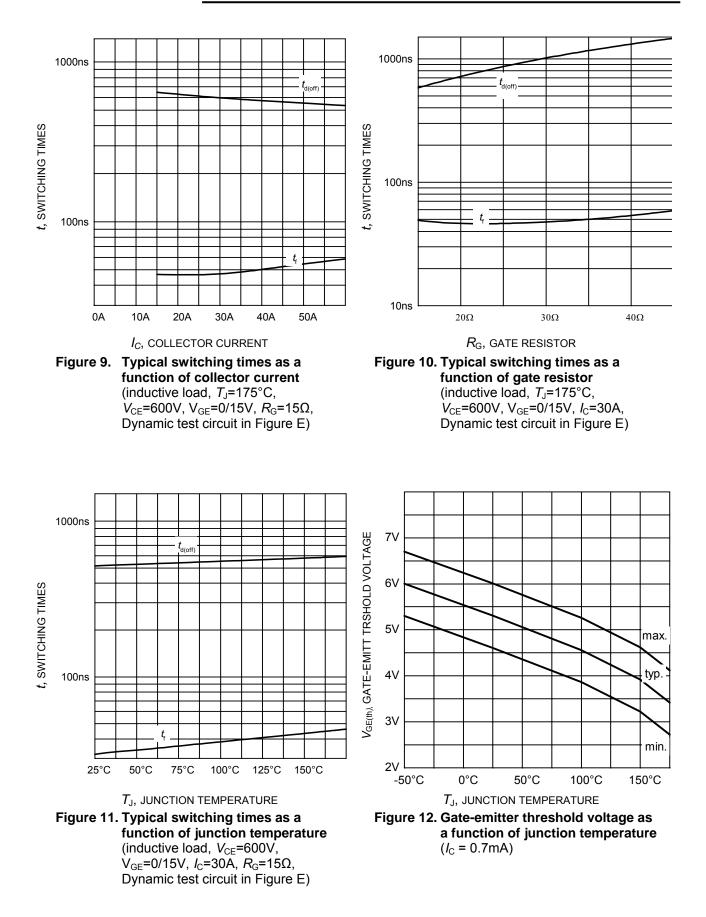

Deremeter	Symbol	Oanditions	Value			11
Parameter	Symbol	Conditions	min.	Тур.	Max.	Unit
IGBT Characteristic						
Turn-off delay time	$t_{d(off)}$	<i>T</i> _j =25°C	-	511	-	
Fall time	t _f	V _{CC} =600V,	-	24	-	
Turn-on energy	Eon	I _C =30A,	-	-	-	mJ
Turn-off energy	E _{off}	V _{GE} =0/15V,	-	1.46	-	
Total switching energy	Ets	$R_{\rm G}$ = 15 Ω	-	1.46	-	

Switching Characteristic, Inductive Load, at T_i =175 °C

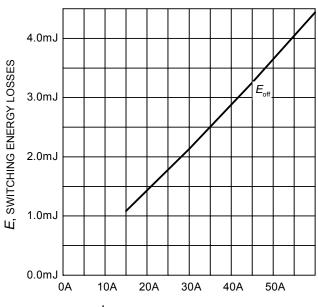
Parameter	Symbol	Conditions		Value		
	Symbol		min.	Тур.	max.	Unit
IGBT Characteristic						
Turn-off delay time	$t_{d(off)}$	<i>T</i> _j =175°C	-	594	-	
Fall time	t _f	V _{CC} =600V,	-	46	-	
Turn-on energy	Eon	I _C =30A,	-	-	-	mJ
Turn-off energy	E _{off}	V _{GE} =0/15V,	-	2.1	-	
Total switching energy	Ets	$R_{\rm G}$ = 15 Ω	-	2.1	-	1



Soft Switching Series



Soft Switching Series


Soft Switching Series

Downloaded from Arrow.com.

Soft Switching Series

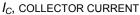
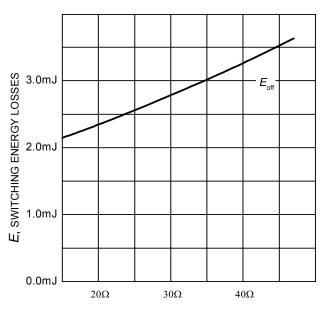
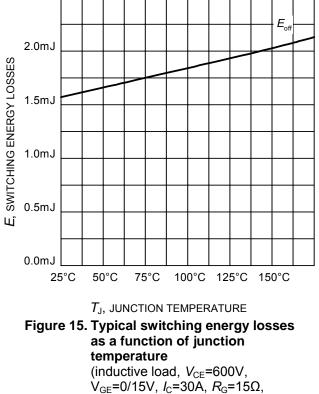
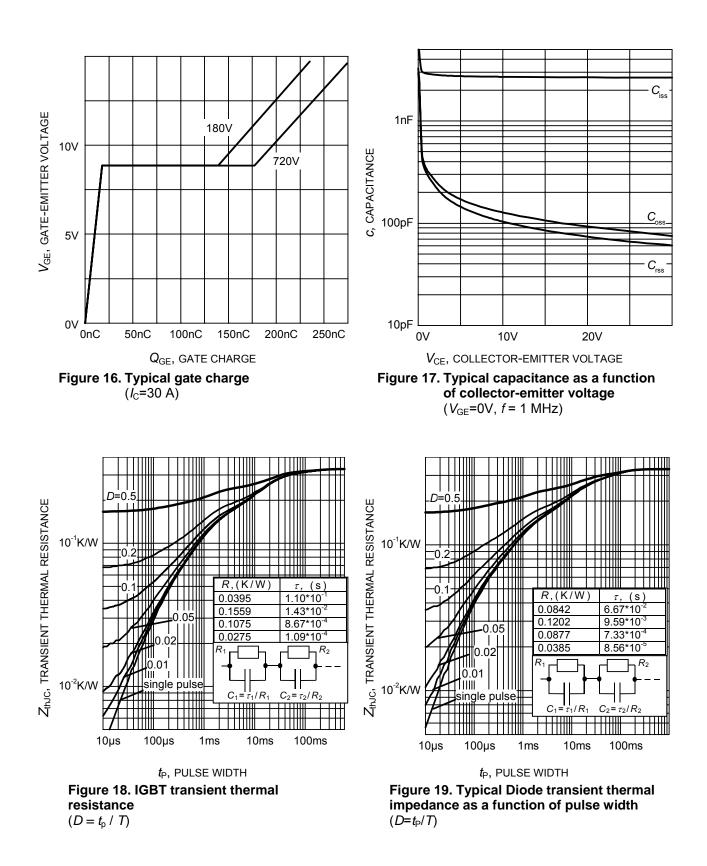
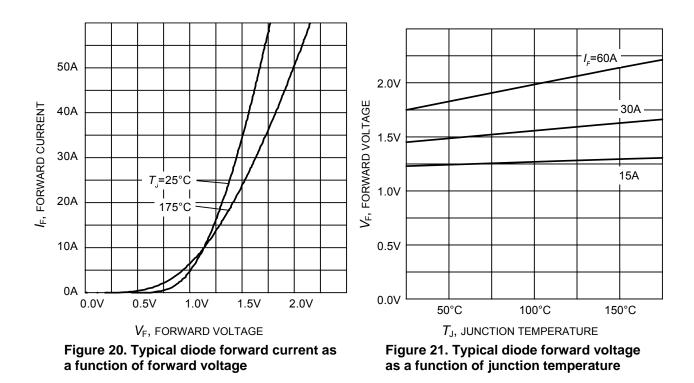




Figure 13. Typical switching energy losses as a function of collector current (inductive load, T_J =175°C, V_{CE} =600V, V_{GE} =0/15V, R_G =15 Ω , Dynamic test circuit in Figure E)

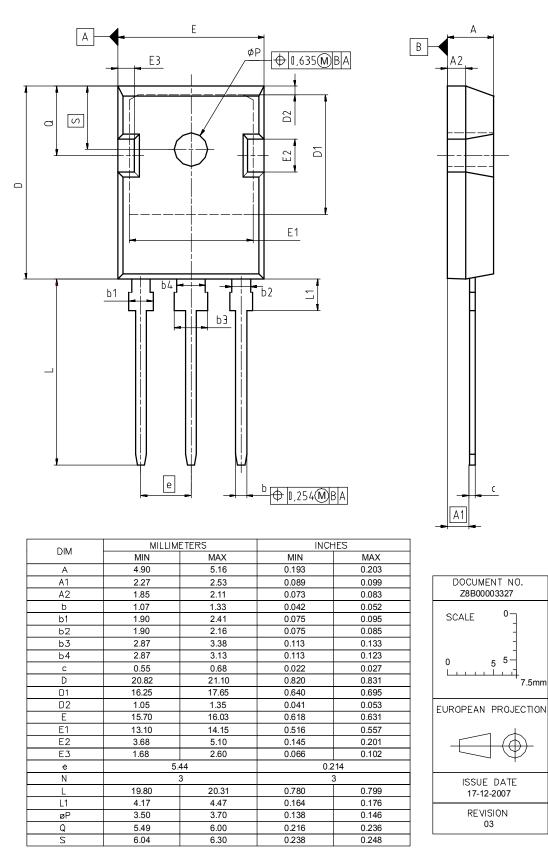
 $R_{\rm G}$, gate resistor


Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T_J =175°C, V_{CE} =600V, V_{GE} =0/15V, I_C =30A, Dynamic test circuit in Figure E)

 V_{GE} – 0/15V, T_C – 30A, T_G – 15Ω, Dynamic test circuit in Figure E)



Soft Switching Series



Soft Switching Series

PG-TO247-3

IHW30N90R

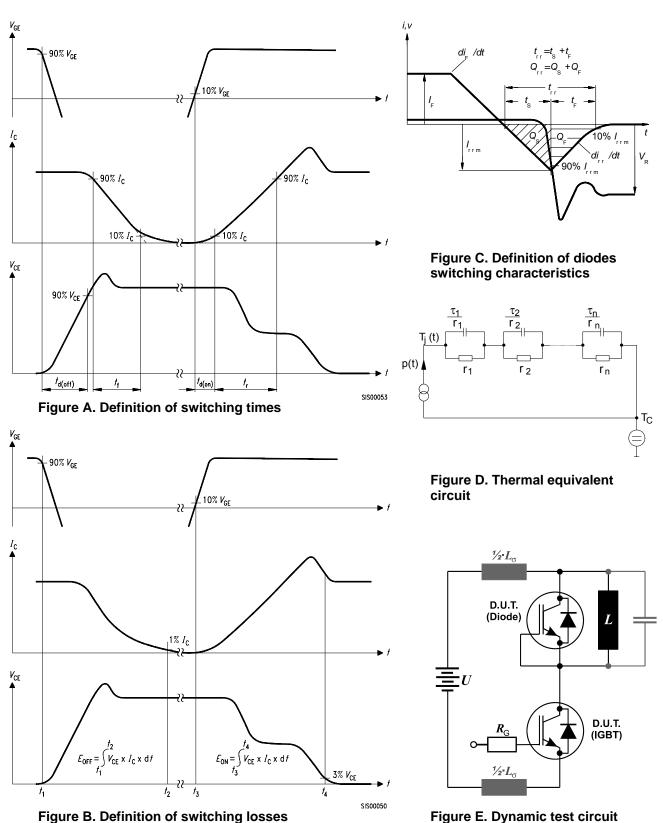


Figure E. Dynamic test circuit

Power Semiconductors

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.