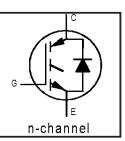
International **ICR** Rectifier

PD - 95604 IRG4IBC30FDPbF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE


Features

- Very Low 1.59V votage drop
- 4.8 mm creapage distance to heatsink
- · Fast: Optimized for medium operating frequencies (1-5 kHz in hard switching, >20 kHz in resonant mode).
- IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes
- Tighter parameter distribution
- Industry standard Isolated TO-220 Fullpak[™] outline

Benefits

- Simplified assembly
- Highest efficiency and power density
 HEXFRED[™] antiparallel Diode minimizes switching losses and EMI
- Lead-Free

Absolute Maximum Ratings

@V_{GE} = 15V, I_C = 17A

Fast CoPack IGBT

TO-220 FULLPAK

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	20.3	
I _C @ T _C = 100°C	Continuous Collector Current	11	
I _{CM}	Pulsed Collector Current ①	120	A
I _{LM}	Clamped Inductive Load Current ②	120	
I _F @ T _C = 100°C	Diode Continuous Forward Current	8.5	
I _{FM}	Diode Maximum Forward Current	120	
Visol	RMS Isolation Voltage, Terminal to Case®	2500	V
V _{GE}	Gate-to-Emitter Voltage	± 20	
P _D @ T _C = 25°C	Maximum Power Dissipation	45	w
P _D @ T _C = 100°C	Maximum Power Dissipation	18	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{0JC}	Junction-to-Case - IGBT		2.8	
R _{0JC}	Junction-to-Case - Diode		4.1	°C/W
Reja	Junction-to-Ambient, typical socket mount		65	
Wt	Weight	2.0 (0.07)		g (oz)

www.irf.com

7/28/04

1

	Parameter	Min.	Тур.	Max.	Units	Conditio	าร
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage3	600		——	V	V_{GE} = 0V, I _C = 250µA	
$\Delta V_{(BR)CES} / \Delta T_{s}$	Temperature Coeff. of Breakdown Voltage		0.69		V/°C	V_{GE} = 0V, I_C = 1.0mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		1.59	1.8		I _C = 17A	V _{GE} = 15V
			1.99		V	I _C = 31A	See Fig. 2, 5
			1.70			I _C = 17A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		V_{CE} = V_{GE} , I_C = 250 μ A	
$\Delta V_{GE(th)} / \Delta T_J$	Temperature Coeff. of Threshold Voltage		-11		mV/°C	V_{CE} = V_{GE} , I_C = 250 μ A	
g fe	Forward Transconductance ④	6.1	10		S	V_{CE} = 100V, I_{C} = 17A	
I _{CES}	Zero Gate Voltage Collector Current			250	μA	$V_{GE} = 0V, V_{CE} = 600V$	
				2500		$V_{GE} = 0V, V_{CE} = 600V,$	T _J = 150°C
V_{FM}	Diode Forward Voltage Drop		1.4	1.7	V	I _C = 12A	See Fig. 13
			1.3	1.6		$I_{\rm C}$ = 12A, $T_{\rm J}$ = 150°C	
IGES	Gate-to-Emitter Leakage Current			±100	nA	$V_{GE} = \pm 20V$	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Q _q	Total Gate Charge (turn-on)		51	77		I _C = 17A	
Qge	Gate - Emitter Charge (turn-on)		7.9	12	nC	V _{CC} = 400V See Fig. 8	
Q _{qc}	Gate - Collector Charge (turn-on)		19	28		V _{GE} = 15V	
t _{d(on)}	Turn-On Delay Time		42			T _J = 25°C	
tr	Rise Time		26		ns	I _C = 17A, V _{CC} = 480V	
t _{d(off)}	Turn-Off Delay Time		230	350		V_{GE} = 15V, R_G = 23 Ω	
t _f	Fall Time		160	230		Energy losses include "tail" and	
Eon	Turn-On Switching Loss		0.63			diode reverse recovery.	
E _{off}	Turn-Off Switching Loss		1.39		mJ	See Fig. 9, 10, 11, 18	
Ets	Total Switching Loss		2.02	3.9			
t _{d(on)}	Turn-On Delay Time		42			T」= 150°C、 See Fig. 9, 10, 11, 18	
t _r	Rise Time		27		ns	$I_{\rm C}$ = 17A, $V_{\rm CC}$ = 480V	
t _{d(off)}	Turn-Off Delay Time		310			V_{GE} = 15V, R_G = 23 Ω	
t _f	Fall Time		310			Energy losses include "tail" and	
Ets	Total Switching Loss		3.2		mJ	diode reverse recovery.	
LE	Internal Emitter Inductance		7.5		nН	Measured 5mm from package	
Cies	Input Capacitance		1100			$V_{GE} = 0V$	
Coes	Output Capacitance		74		рF	V _{CC} = 30V See Fig. 7	
Cres	Reverse Transfer Capacitance		14			f = 1.0MHz	
t _{rr}	Diode Reverse Recovery Time		42	60	ns	TJ = 25°C See Fig.	
			80	120		T _J = 125°C 14 I _F = 12A	
Irr	Diode Peak Reverse Recovery Current		3.5	6.0	Α	TJ = 25°C See Fig.	
			5.6	10		T _J = 125°C 15 V _R = 200V	
Q _{rr}	Diode Reverse Recovery Charge		80	180	nC	T _J = 25°C See Fig.	
			220	600		T _J = 125°C 16 di/dt 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		180		A/µs	TJ = 25°C See Fig.	
	During t _b		120			T _J = 125°C 17	

International **ISR** Rectifier

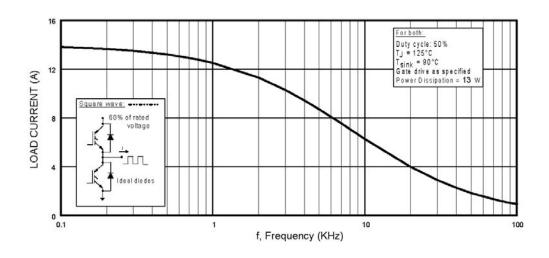


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

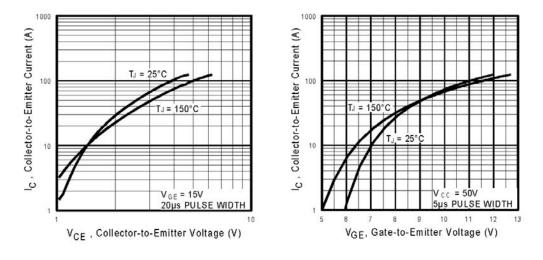


Fig. 2 - Typical Output Characteristics

International **TOR** Rectifier

17A =

8

20 40 60 80 100 120 140 160

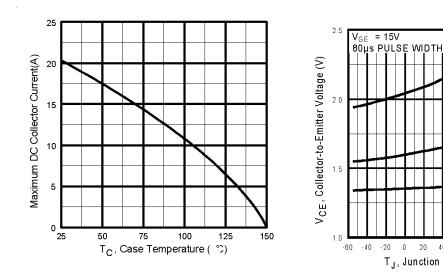


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

T_J, Junction Temperature (°C)

-20 0

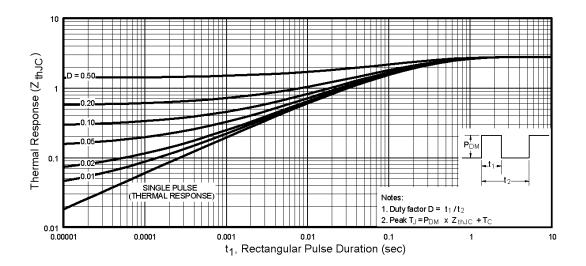
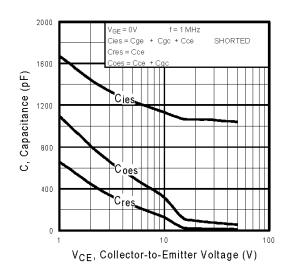



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

IRG4IBC30FDPbF

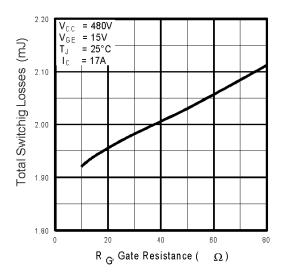


Fig. 9 - Typical Switching Losses vs. Gate Resistance

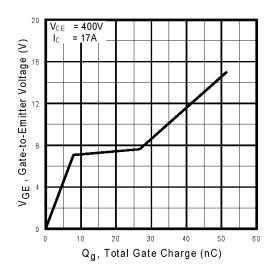


Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

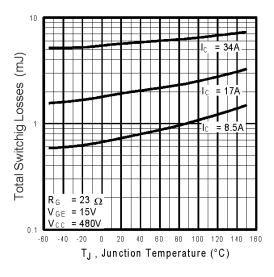


Fig. 10 - Typical Switching Losses vs. JunctionTemperature

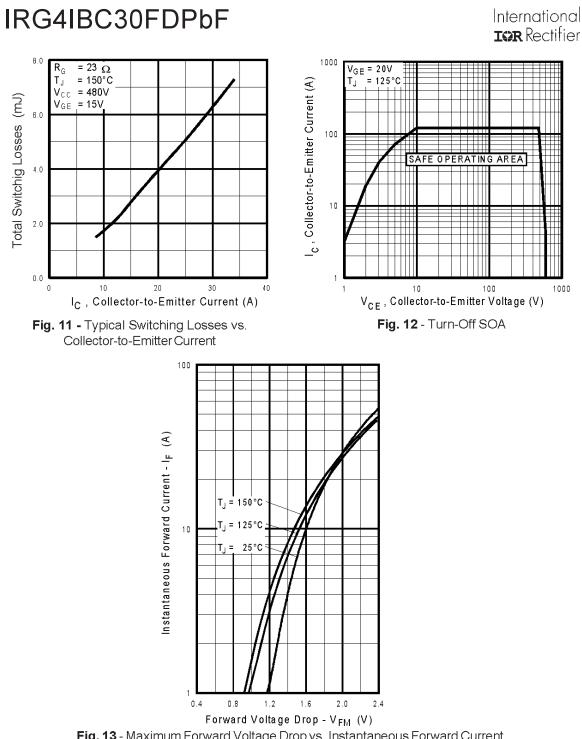


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

International **ISPR** Rectifier

IRG4IBC30FDPbF

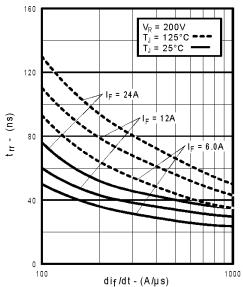


Fig. 14 - Typical Reverse Recovery vs. dif/dt

600

400

200

0

Q_{RR} - (nC)

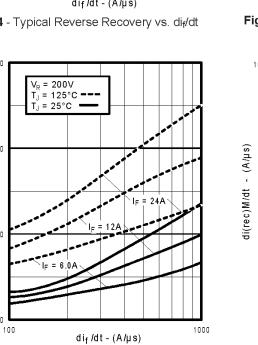


Fig. 16 - Typical Stored Charge vs. dif/dt

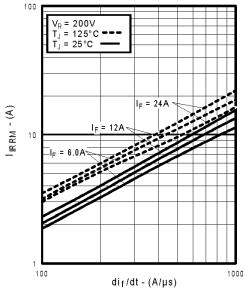


Fig. 15 - Typical Recovery Current vs. dif/dt

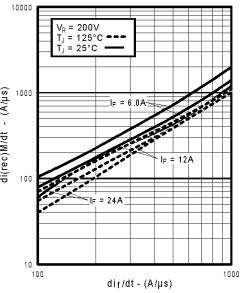
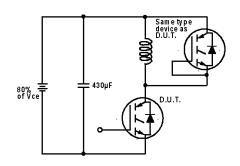



Fig. 17 - Typical di(rec)M/dt vs. dif/dt

International

 $\label{eq:Fig.18a} \begin{array}{l} \textbf{Fig. 18a} - \textbf{Test Circuit for Measurement of} \\ \textbf{I}_{LM}, \textbf{E}_{on}, \textbf{E}_{off}(\textbf{diode}), t_{r}, \textbf{Q}_{rr}, \textbf{I}_{rr}, t_{d}(\textbf{on}), t_{r}, t_{d}(\textbf{off}), t_{f} \end{array}$

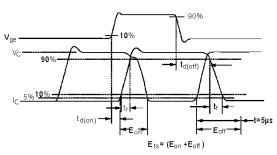
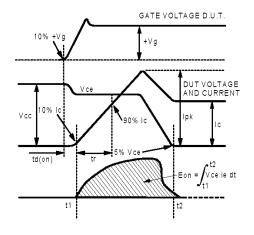
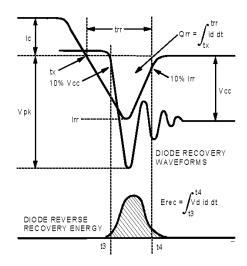
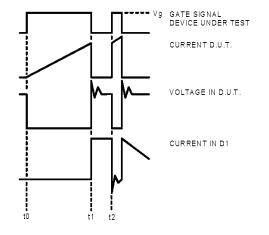
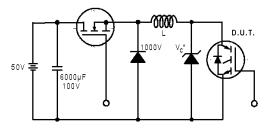




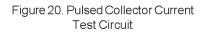
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining ${{E_{\text{off}}},\,t_{\text{d(off)}},\,t_{\text{f}}}$



 $\begin{array}{l} \textbf{Fig. 18c} \text{ - Test Waveforms for Circuit of } \text{ Fig. 18a,} \\ \text{ Defining } \text{E}_{\text{on}}, \, t_{\text{d}(\text{on})}, \, t_{r} \end{array}$


 $\label{eq:Fig.18d} \begin{array}{c} \textbf{Fig. 18d} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ & \text{Defining } E_{\text{rec}}, t_{\text{rr}}, Q_{\text{rr}}, I_{\text{rr}} \end{array}$

International **IGR** Rectifier



0 - 480V

 \mathbf{O}

Figure 19. Clamped Inductive Load Test Circuit

480V

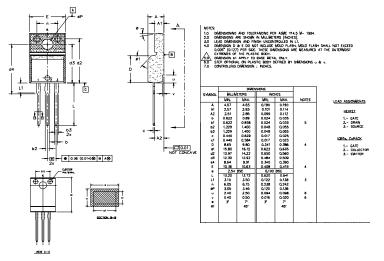
R_L= 480v 4 X I_C @25°C

Ş

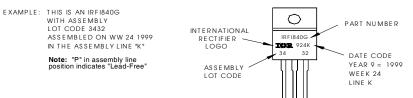
Notes:

^① Repetitive rating: V_{GE}=20V; pulse width limited by maximum junction temperature (figure 20)

 $V_{CC}=80\%(V_{CES})$, $V_{GE}=20V$, L=10µH, R_G = 23 Ω (figure 19)


3 Pulse width $\leq 80\mu$ s; duty factor $\leq 0.1\%$.

④ Pulse width 5.0µs, single shot.


⑤ t = 60s, f = 60Hz

TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

TO-220 Full-Pak Part Marking Information

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>