

HighSpeed 2-Technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

- Designed for:
 - SMPS
 - Lamp Ballast
 - ZVS-Converter
- 2nd generation HighSpeed-Technology for 1200V applications offers:
 - loss reduction in resonant circuits
 - temperature stable behavior
 - parallel switching capability
 - tight parameter distribution
 - E_{off} optimized for I_{C} =3A
- Qualified according to JEDEC² for target applications
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models : <u>http://www.infineon.com/igbt/</u>

G
G C E PG-TO-247-3
GCE GCE
PG-TO-220-3-1

Туре	V _{CE}	I _C	E _{off}	Tj	Marking	Package
IKW03N120H2	1200V	ЗA	0.15mJ	150°C	K03H1202	PG-TO-247-3
IKP03N120H2	1200V	ЗA	0.15mJ	150°C	K03H1202	PG-TO-220-3-1

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	1200	V
Triangular collector current	I _C		А
$T_{\rm C} = 25^{\circ}{\rm C}, \ f = 140{\rm kHz}$		9.6	
$T_{\rm C} = 100^{\circ}{\rm C}, \ f = 140{\rm kHz}$		3.9	
Pulsed collector current, t_p limited by T_{jmax}	<i>I</i> _{Cpuls}	9.9	
Turn off safe operating area	-	9.9	
$V_{CE} \leq 1200 V, \ T_j \leq 150^\circ C$			
Diode forward current	/ _F		
$T_{\rm C} = 25^{\circ}{\rm C}$		9.6	
$T_{\rm C} = 100^{\circ}{\rm C}$		3.9	
Gate-emitter voltage	V _{GE}	±20	V
Power dissipation	P _{tot}	62.5	W
$T_{\rm C} = 25^{\circ}{\rm C}$			
Operating junction and storage temperature	$T_{\rm j}$, $T_{ m stg}$	-40+150	°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

¹ J-STD-020 and JESD-022

Power Semiconductors

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				l
IGBT thermal resistance,	$R_{ m thJC}$		2.0	K/W
junction – case				
Diode thermal resistance,	$R_{\rm thJCD}$		3.2	
junction - case				
Thermal resistance,	$R_{ m thJA}$	P-TO-220-3-1	62	
junction – ambient		P-TO-247-3-21		

Electrical Characteristic, at $T_j = 25$ °C, unless otherwise specified

Peremeter	Symbol	Conditions		Value		Unit
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE} = 0V, I_{\rm C} = 300 \mu A$	1200	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 \rm V, \ I_{\rm C} = 3 \rm A$				
		T _j =25°C	-	2.2	2.8	
		<i>T</i> _j =150°C	-	2.5	-	
		$V_{GE} = 10V, I_C=3A,$ $T_j=25^{\circ}C$	-	2.4	-	
Diode forward voltage	V _F	$V_{\rm GE} = 0, I_{\rm F} = 2A$				
		<i>T</i> _i =25°C	-	2.0	2.5	
		<i>T</i> _j =150°C	-	1.75	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}=90\mu\rm{A}, V_{\rm CE}=V_{\rm GE}$	2.1	3	3.9	
Zero gate voltage collector current	I _{CES}	$V_{\rm CE} = 1200 \rm V, V_{\rm GE} = 0 \rm V$				μA
		T _j =25°C	-	-	20	
		<i>T</i> _j =150°C	-	-	80	
Gate-emitter leakage current	I _{GES}	$V_{CE}=0V, V_{GE}=20V$	-	-	100	nA
Transconductance	$g_{ m fs}$	$V_{\rm CE} = 20 \text{V}, \ I_{\rm C} = 3 \text{A}$	-	2	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	205	-	pF
Output capacitance	Coss	$V_{\rm GE}=0V$,	-	24	-	
Reverse transfer capacitance	C _{rss}	f=1MHz	-	7	-	
Gate charge	Q _{Gate}	V _{CC} =960V, <i>I</i> _C =3A	-	22	-	nC
		$V_{\rm GE}$ =15V				
Internal emitter inductance	L _E	PG-TO-220-3-1	-	7	-	nH
measured 5mm (0.197 in.) from case		PG-TO-247-3-21	-	13	-	

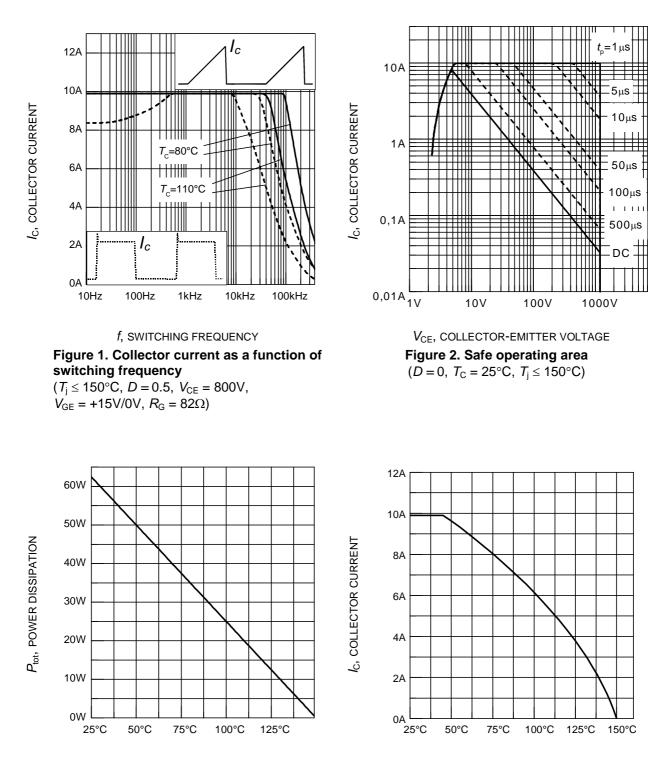
Switching Characteristic, Inductive Load, at Tj=25 °C

	Cumhal	Conditions		Value		- Unit
Parameter	Symbol	Conditions	min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	$T_{\rm j}=25^{\circ}{\rm C}$,	-	9.2	-	ns
Rise time	t _r	$V_{\rm CC} = 800V, I_{\rm C} = 3A,$	-	5.2	-	
Turn-off delay time	t _{d(off)}	$V_{\rm GE} = 15 V/0 V,$ $R_{\rm G} = 82 \Omega,$	-	281	-	
Fall time	t _f	$L_{\sigma}^{(2)} = 180 \text{ nH},$	-	29	-	
Turn-on energy	Eon	$C_{\sigma}^{(2)} = 40 \text{ pF}$	-	0.14	-	mJ
Turn-off energy	E _{off}	Energy losses include "tail" and diode ³⁾	-	0.15	-	
Total switching energy	Ets	reverse recovery.	-	0.29	-	
Anti-Parallel Diode Characteristic		·				
Diode reverse recovery time	t _{rr}	<i>T</i> _j =25°C,	-	42	-	ns
Diode reverse recovery charge	Q _{rr}	V _R =800V, I _F =3A,	-	0.23	-	μC
Diode peak reverse recovery current	<i>I</i> _{rrm}	$R_{\rm G}$ =82 Ω	-	10.3	-	А
Diode current slope	di _F /dt]	-	993	-	A/μs
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	1180	-	

Switching Characteristic. Inductive Load. at T=150 °C

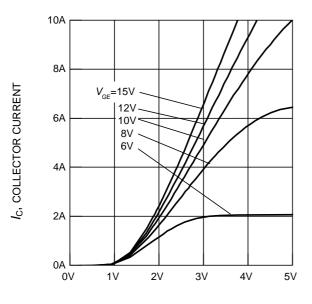
Desemptor	Symbol Conditions		Value		11	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	<i>T</i> _j =150°C	-	9.4	-	ns
Rise time	t _r	$V_{\rm CC} = 800 \text{V}$,	-	6.7	-	
Turn-off delay time	t _{d(off)}	I _C =3A,	-	340	-	
Fall time	t _f	$V_{\rm GE} = 15 {\rm V} / 0 {\rm V}$,	-	63	-	
Turn-on energy	Eon	$R_{\rm G} = 82\Omega$,	-	0.22	-	mJ
Turn-off energy	E _{off}	L _σ ²⁾ =180nH, C _σ ²⁾ =40pF	-	0.26	-	
Total switching energy	E _{ts}	Energy losses include "tail" and diode ³⁾ reverse recovery.	-	0.48	-	
Anti-Parallel Diode Characteristic						•
Diode reverse recovery time	t _{rr}	<i>T</i> _j =150°C	-	125	-	ns
Diode reverse recovery charge	Q _{rr}	V _R =800V, <i>I</i> _F =3A,	-	0.51	-	μC
Diode peak reverse recovery current	I _{rrm}	$R_{\rm G}$ =82 Ω	-	12	-	А
Diode current slope	di _F /dt]	-	829	-	A/μs
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	540	-	

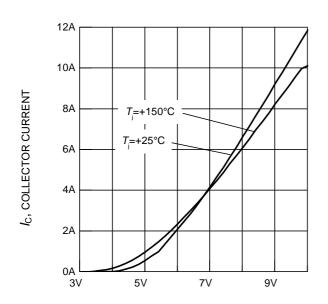
 $^{2)}$ Leakage inductance L_{σ} and stray capacity C_{σ} due to dynamic test circuit in figure E $^{3)}$ Commutation diode from device IKP03N120H2

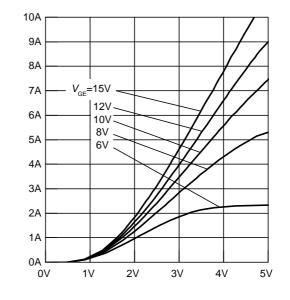

Power Semiconductors

Switching Energy ZVT, Inductive Load

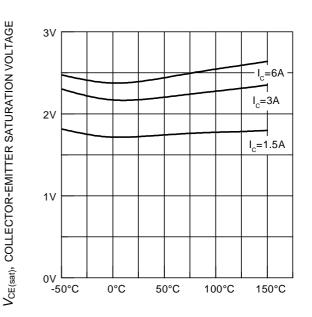
	Ourseland	O an diti ana		Value	11	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-off energy	E _{off}	$V_{\rm CC} = 800 \rm V$,				mJ
		V _{CC} =800V, I _C =3A, V _{GE} =15V/0V,				
		$V_{\rm GE} = 15 {\rm V} / 0 {\rm V}$,				
		$R_{\rm G}$ =82 Ω ,				
		$C_r^{2)}=4nF$				
		T _j =25°C	-	0.05	-	
		<i>T</i> _j =150°C	-	0.09	-	



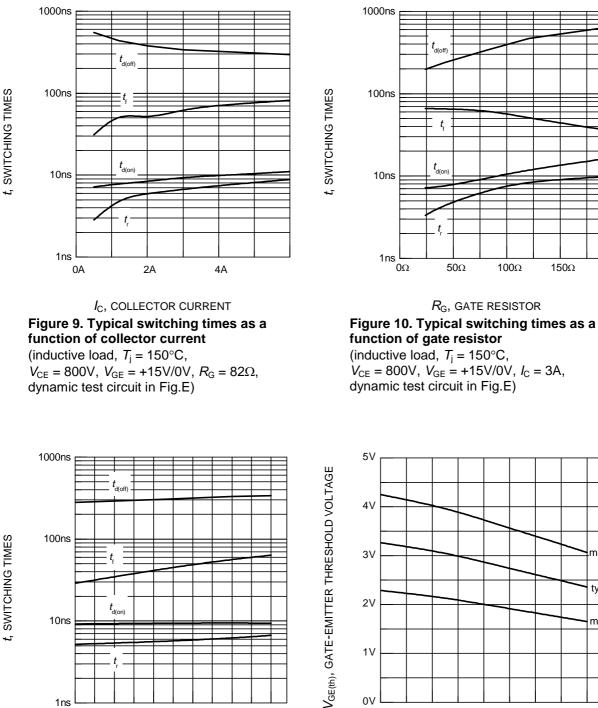

 $\label{eq:T_C} \begin{array}{l} T_C, CASE TEMPERATURE$ \\ \mbox{Figure 3. Power dissipation as a function} \\ $of case temperature$ \\ $(T_i \leq 150^\circ C)$ \\ \end{array}$

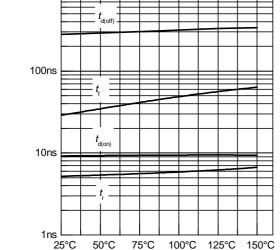


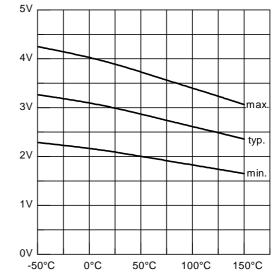
 V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics $(T_i = 25^{\circ}C)$

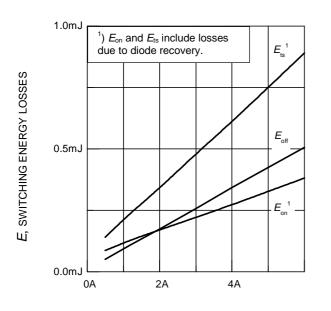


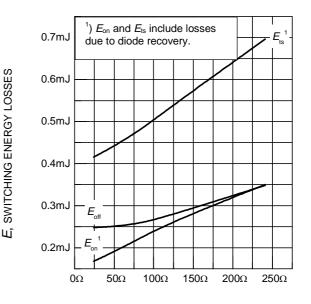
 V_{GE} , GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (V_{CE} = 20V)


Ic, COLLECTOR CURRENT

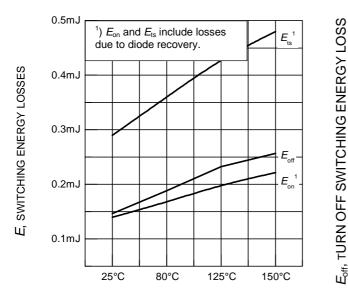

 V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics ($T_i = 150^{\circ}C$)




 $T_{\rm j}$, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{CE} = 800V$, $V_{\rm GE} = +15 \text{V}/0 \text{V}, I_{\rm C} = 3 \text{A}, R_{\rm G} = 82 \Omega,$ dynamic test circuit in Fig.E)


 $T_{\rm j}$, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature $(I_{\rm C} = 0.09 {\rm mA})$

t, SWITCHING TIMES



 $I_{\rm C}$, COLLECTOR CURRENT **Figure 13. Typical switching energy losses as a function of collector current** (inductive load, $T_{\rm j}$ = 150°C, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)

 $R_{\rm G}$, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_{\rm j}$ = 150°C, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, dynamic test circuit in Fig.E)

 T_{j} , JUNCTION TEMPERATURE **Figure 15. Typical switching energy losses as a function of junction temperature** (inductive load, $V_{CE} = 800V$, $V_{GE} = +15V/0V$, $I_C = 3A$, $R_G = 82\Omega$, dynamic test circuit in Fig.E)

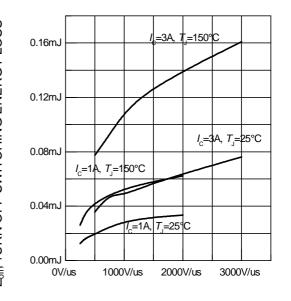
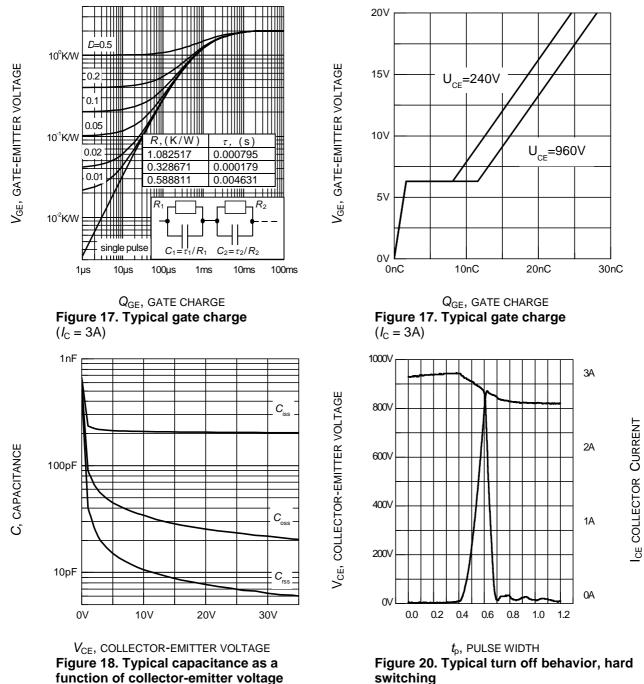
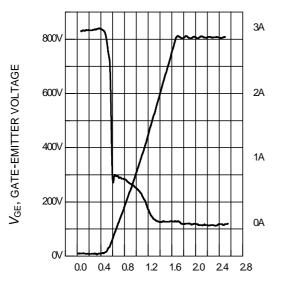
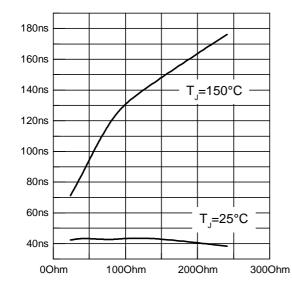



Figure 16. Typical turn off switching energy loss for soft switching (dynamic test circuit in Fig. E)



function of collector-emitter voltage ($V_{GE} = 0V, f = 1MHz$)

 $(V_{GE}=15/0V, R_G=82\Omega, T_j = 150^{\circ}C, Dynamic test circuit in Figure E)$



ICE COLLECTOR CURRENT

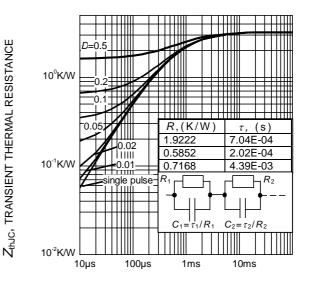
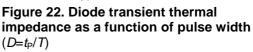
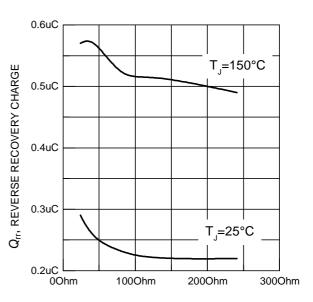

 $t_{\rm p}$, PULSE WIDTH

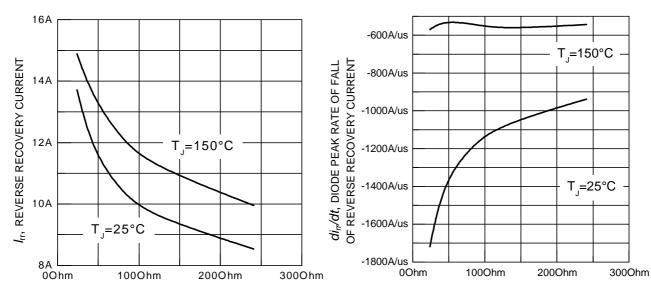
Figure 21. Typical turn off behavior, soft switching


(V_{GE}=15/0V, R_G =82 Ω , T_j = 150°C, Dynamic test circuit in Figure E)



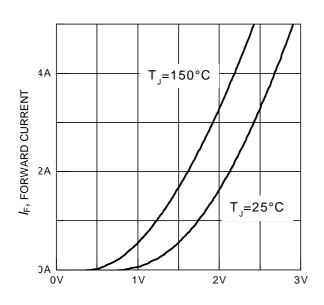
R_G , GATE RESISTANCE Figure 23. Typical reverse recovery time as a function of diode current slope V_R =800V, I_F =3A, Dynamic test circuit in Figure E)

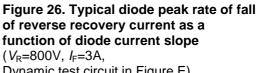
t_P, PULSE WIDTH



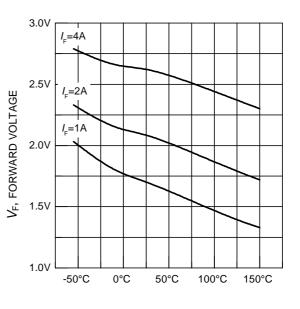
R_G , GATE RESISTANCE

Figure 24. Typical reverse recovery charge as a function of diode current slope $(V_R=800V, I_F=3A, Dynamic test circuit in Figure E)$


tr, reverse recovery time

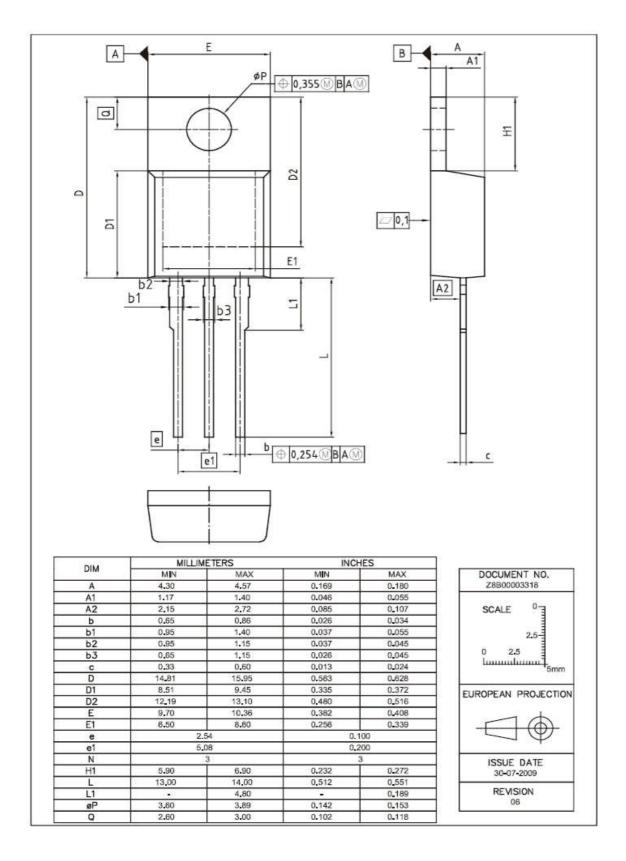

 R_G , GATE RESISTANCE Figure 25. Typical reverse recovery current as a function of diode current slope $(V_{\rm R}=800\rm V, I_{\rm F}=3\rm A,$

Dynamic test circuit in Figure E)



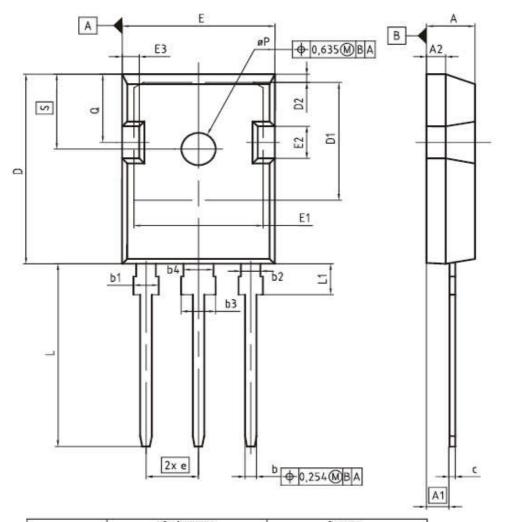
 $V_{\rm F}$, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage

Dynamic test circuit in Figure E)

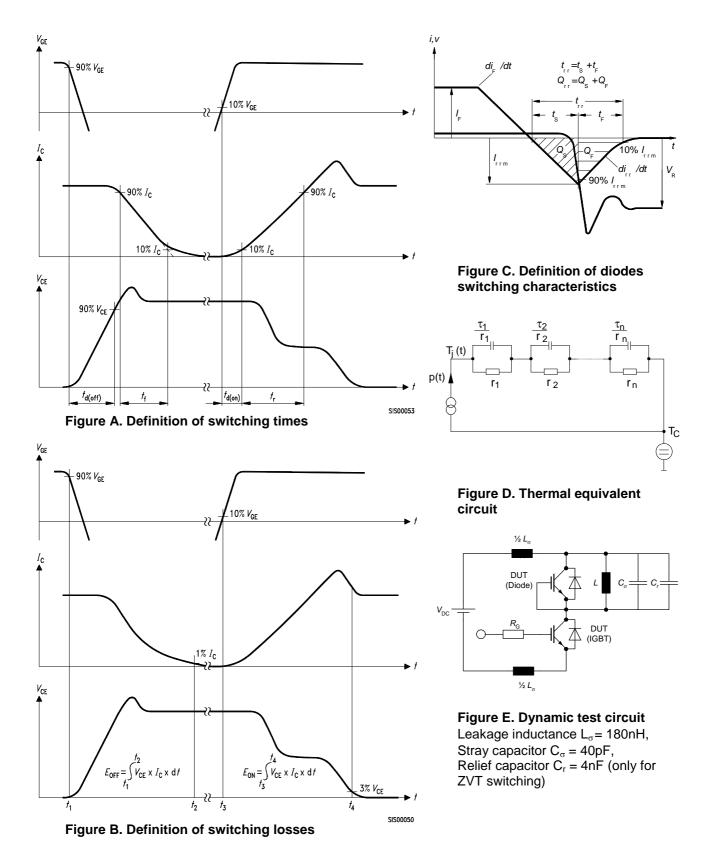


$T_{\rm II}$, JUNCTION TEMPERATURE

Figure 28. Typical diode forward voltage as a function of junction temperature



PG-TO220-3


PG-TO247-3

DIM.	MILLIM	IETERS	NCI	HES
DIM	MIN	MAX	MIN	MAX
A	4.83	5.21	0.190	0.205
A1	2,27	2,54	0.089	0,100
A2	1.85	2,16	0,073	0.085
b	1.07	1,33	0.042	0.052
b1	1,90	2,41	0.075	0.095
b2	1.90	2.16	0.075	0.085
b3	2.87	3,38	0,113	0,133
b4	2,87	3,13	0,113	0,123
C.	0,55	0.68	0.022	0.027
D	20.80	21.10	0.819	0.831
D1	16,25	17.65	0.640	0.695
D2	0.95	1.35	0.037	0.053
E	15,70	16,13	0,618	0,635
E1	13.10	14.15	0.516	0.557
E2	3.68	5.10	0.145	0.201
E3	1.00	2.60	0.039	0.102
0	5.	44 (BSC)	0.2	214 (BSC)
N	1	3		3
L	19.80	20.32	0.780	0.800
L1	4.10	4.47	0.161	0,176
øP	3.50	3.70	0.138	0.146
Q	5.49	6.00	0.216	0.236
S	6.04	6.30	0.238	0.248

ZBB000	
SCALE	Ē
0 L	5 5 -
EUROPEAN	PROJECTION
+	}\$
	DATE -2010
	SION 05

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.