SPB03N60C3

Cool MOS ${ }^{\text {TM }}$ Power Transistor

Feature

- New revolutionary high voltage technology

$V_{\mathrm{DS}} @ T_{\text {jmax }}$	650	V
$R_{\mathrm{DS}(\text { on })}$	1.4	Ω
I_{D}	3.2	A

- Ultra low gate charge
- Periodic avalanche rated

PG-TO263

- Qualified according to $\mathrm{JEDEC}^{0)}$ for target applications

Type	Package	Ordering Code	Marking
SPB03N60C3	PG-TO263	Q67040-S4391	03N60C3

Drain

- Extreme dv/dt rated
- High peak current capability
- Improved transconductance

Maximum Ratings

Parameter	Symbol	Value		Unit
		SPB		
Continuous drain current $\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{C}}=100^{\circ} \mathrm{C} \end{aligned}$	ID	$\begin{gathered} 3.2 \\ 2 \end{gathered}$		A
Pulsed drain current, t_{p} limited by $T_{\text {jmax }}$	$I_{\text {D puls }}$	9.6		A
Avalanche energy, single pulse $I_{D}=2.4 \mathrm{~A}, V_{D D}=50 \mathrm{~V}$	$E_{\text {AS }}$	100		mJ
Avalanche energy, repetitive t_{AR} limited by $T_{\text {jmax }}{ }^{2}$) $I_{D}=3.2 \mathrm{~A}, V_{D D}=50 \mathrm{~V}$	$E_{\text {AR }}$	0.2		
Avalanche current, repetitive $t_{\text {AR }}$ limited by $T_{\text {jmax }}$	$I_{\text {AR }}$	3.2		A
Gate source voltage static	$V_{\text {GS }}$	± 20		V
Gate source voltage AC ($\mathrm{>}>1 \mathrm{~Hz}$)	$V_{G S}$	± 30		
Power dissipation, $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	38		W
Operating and storage temperature	$T_{\mathrm{j}}, T_{\text {stg }}$	$-55 \ldots+150$		${ }^{\circ} \mathrm{C}$
Reverse diode dv/dt 7)	dv/dt	15		V / ns

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain Source voltage slope	$\mathrm{d} v / \mathrm{d} t$	50	$\mathrm{~V} / \mathrm{ns}$
$V_{\mathrm{DS}}=480 \mathrm{~V}, I_{\mathrm{D}}=3.2 \mathrm{~A}, T_{\mathrm{j}}=125^{\circ} \mathrm{C}$			

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Thermal resistance, junction - case	$R_{\text {thJC }}$	-	-	3.3	K/W
Thermal resistance, junction - case, FullPAK	$R_{\text {thJC FP }}$	-	-	4.1	
Thermal resistance, junction - ambient, leaded	$R_{\text {thJA }}$	-	-	62	
Thermal resistance, junction - ambient, FullPAK	$R_{\text {thJA FP }}$	-	-	80	
SMD version, device on PCB: @ min. footprint @ $6 \mathrm{~cm}^{2}$ cooling area ${ }^{3}$)	$R_{\text {thJA }}$	-	35	62	
Soldering temperature, reflow soldering, MSL1 1.6 mm (0.063 in.) from case for 10 s	$T_{\text {sold }}$	-	-	260	${ }^{\circ} \mathrm{C}$

Electrical Characteristics, at $T_{\mathrm{i}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Drain-source breakdown voltage	$V_{(B R) D S S}$	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{D}}=0.25 \mathrm{~mA}$	600	-	-	V
Drain-Source avalanche breakdown voltage	$V{ }_{\text {(BR) }}$	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{D}}=3.2 \mathrm{~A}$	-	700	-	
Gate threshold voltage	$V_{\mathrm{GS}}(\mathrm{th})$	$I_{D}=135 \mu \mathrm{~A}, \mathrm{~V}_{G S}=V_{D S}$	2.1	3	3.9	
Zero gate voltage drain current	$I_{\text {DSS }}$	$\begin{aligned} & V_{\mathrm{DS}}=600 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		0.5	$\begin{gathered} 1 \\ 70 \end{gathered}$	$\mu \mathrm{A}$
Gate-source leakage current	$I_{\text {GSS }}$	$v_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	nA
Drain-source on-state resistance	$R_{\text {DS(on) }}$	$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=2 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1.26 \\ 3.8 \end{gathered}$	1.4	Ω
Gate input resistance	R_{G}	$f=1 \mathrm{MHz}$, open drain	-	10	-	

Electrical Characteristics

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Transconductance	$g_{\text {fs }}$	$V_{\mathrm{DS}} \geq 2^{*} / \mathrm{D}^{*} R_{\mathrm{DS}}$ (on) max, $I_{D}=2 A$	-	3.4	-	S
Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=25 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	400	-	pF
Output capacitance	$C_{\text {oss }}$		-	150	-	
Reverse transfer capacitance	$C_{\text {rss }}$		-	5	-	
Effective output capacitance, ${ }^{5}$) energy related	$C_{\text {O(er) }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & V_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 480 \mathrm{~V} \end{aligned}$	-	12	-	
Effective output capacitance, 6) time related	$C_{\text {o(tr) }}$		-	26	-	
Turn-on delay time	$t_{\text {d}(0 n) ~}$	$\begin{aligned} & v_{\mathrm{DD}}=350 \mathrm{~V}, v_{\mathrm{GS}}=0 / 10 \mathrm{~V}, \\ & I_{\mathrm{D}}=3.2 \mathrm{~A}, \\ & R_{\mathrm{G}}=20 \Omega \end{aligned}$	-	7	-	ns
Rise time	t_{r}		-	3	-	
Turn-off delay time	$t_{\mathrm{d}(\mathrm{off})}$		-	64	100	
Fall time	t_{f}		-	12	20	

Gate Charge Characteristics

Gate to source charge	Q_{gs}	$V_{D D}=420 \mathrm{~V}, I_{\text {d }}=3.2 \mathrm{~A}$	-	2	-	nc
Gate to drain charge	Q_{gd}		-	6	-	
Gate charge total	Q_{g}	$\begin{aligned} & V_{\mathrm{DD}}=420 \mathrm{~V}, l_{\mathrm{D}}=3.2 \mathrm{~A}, \\ & V_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$	-	13	17	
Gate plateau voltage	$V_{\text {(plateau) }}$	$V_{\text {DD }}=420 \mathrm{~V}, \mathrm{l}_{\mathrm{D}}=3.2 \mathrm{~A}$	-	5.5	-	v

${ }^{0}$ J-STD20 and JESD22
${ }^{1}$ Limited only by maximum temperature
${ }^{2}$ Repetitve avalanche causes additional power losses that can be calculated as $P_{A V}=E_{A R}{ }^{*} f$.
${ }^{3}$ Device on $40 \mathrm{~mm} * 40 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical without blown air.
${ }^{4} C_{o(e r)}$ is a fixed capacitance that gives the same stored energy as $C_{o s s}$ while V_{DS} is rising from 0 to $80 \% V_{\mathrm{DSs}}$. ${ }^{5} C_{0(\text { tr) }}$ is a fixed capacitance that gives the same charging time as $C_{0 \text { ss }}$ while $V_{D S}$ is rising from 0 to $80 \% V_{D S S}$.
$6 I_{S D}<=I_{D}$, di/dt $<=400 \mathrm{~A} /$ us, $V_{\text {DClink }}=400 \mathrm{~V}, V_{\text {peak }}<V_{B R}, D S S, T_{j}<T_{j, \text { max }}$.
Identical low-side and high-side switch.

Electrical Characteristics

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Inverse diode continuous forward current	I_{S}	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	3.2	A
Inverse diode direct current, pulsed	$I_{\text {SM }}$		-	-	9.6	
Inverse diode forward voltage	$V_{\text {SD }}$	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=I_{S}$	-	1	1.2	V
Reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & V_{\mathrm{R}}=420 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=/_{\mathrm{S}}, \\ & \mathrm{~d} i_{\mathrm{F}} / \mathrm{d}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	250	400	ns
Reverse recovery charge	$Q_{\text {rr }}$		-	1.8	-	$\mu \mathrm{C}$
Peak reverse recovery current	$I_{\text {rrm }}$		-	15	-	A
Peak rate of fall of reverse recovery current	$d i_{\mathrm{rr}} / d t$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	-	-	A/ $/ \mathrm{s}$

Typical Transient Thermal Characteristics

Symbol	Value	Unit	Symbol	Value		Unit
	SPB			SPB		
$R_{\text {th1 }}$	0.054	K/W	$C_{\text {th1 }}$	0.00005232		Ws/K
$R_{\text {th2 }}$	0.103		$C_{\text {th2 }}$	0.0002034		
$R_{\text {th3 }}$	0.178		$C_{\text {th3 }}$	0.0002963		
$R_{\text {th4 }}$	0.757		$C_{\text {th4 }}$	0.0009103		
$R_{\text {th5 }}$	0.682		$C_{\text {th5 }}$	0.002084		
$R_{\text {th6 }}$	0.202		$C_{\text {th6 }}$	0.024		

2 Power dissipation FullPAK
$P_{\text {tot }}=f\left(T_{\mathrm{C}}\right)$

4 Safe operating area FullPAK

$I_{D}=f\left(V_{D S}\right)$
parameter: $D=0, T_{C}=25^{\circ} \mathrm{C}$

5 Transient thermal impedance
$Z_{\text {thJC }}=f\left(t_{\mathrm{p}}\right)$
parameter: $D=t_{\mathrm{p}} / T$

7 Typ. output characteristic
$I_{D}=f\left(V_{D S}\right) ; \quad T_{j}=25^{\circ} \mathrm{C}$
parameter: $t_{\mathrm{p}}=10 \mu \mathrm{~s}, V_{\mathrm{GS}}$

6 Transient thermal impedance FulIPAK
$Z_{\text {thJC }}=f\left(t_{\mathrm{p}}\right)$
parameter: $D=t_{\mathrm{p}} / t$

8 Typ. output characteristic

$I_{D}=f\left(V_{D S}\right) ; \quad T_{j}=150^{\circ} \mathrm{C}$
parameter: $t_{\mathrm{p}}=10 \mu \mathrm{~s}, V_{\mathrm{GS}}$

9 Typ. drain-source on resistance
$R_{\text {DS(on) }}=f\left(I_{D}\right)$
parameter: $T_{j}=150^{\circ} \mathrm{C}, V_{\mathrm{GS}}$

11 Typ. transfer characteristics
$I_{\mathrm{D}}=f\left(V_{\mathrm{GS}}\right) ; V_{\mathrm{DS}} \geq 2 \times I_{\mathrm{D}} \times R_{\mathrm{DS}(\mathrm{on}) \max }$ parameter: $t_{\mathrm{p}}=10 \mu \mathrm{~s}$

10 Drain-source on-state resistance
$R_{\text {DS(on) }}=f\left(T_{\mathrm{j}}\right)$
parameter: $I_{D}=2 \mathrm{~A}, V_{G S}=10 \mathrm{~V}$

12 Typ. gate charge

$V_{\mathrm{GS}}=f\left(Q_{\text {Gate }}\right)$
parameter: $I_{D}=3.2 \mathrm{~A}$ pulsed

13 Forward characteristics of body diode
$I_{F}=f\left(V_{S D}\right)$
parameter: $T_{\mathrm{j}}, \mathrm{tp}=10 \mu \mathrm{~s}$

15 Typ. switching time

$t=f\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{D S}=380 \mathrm{~V}, V_{G S}=0 /+13 \mathrm{~V}, I_{\mathrm{D}}=3.2 \mathrm{~A}$

14 Typ. switching time

$t=f\left(I_{\mathrm{D}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, R_{\mathrm{G}}=20 \Omega$

16 Typ. drain current slope

$\mathrm{d} / \mathrm{d} t=\mathrm{f}\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$ par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, I_{\mathrm{D}}=3.2 \mathrm{~A}$

17 Typ. drain source voltage slope
$\mathrm{d} v / \mathrm{d} t=\mathrm{f}\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$ par.: $V_{D S}=380 \mathrm{~V}, V_{G S}=0 /+13 \mathrm{~V}, I_{\mathrm{D}}=3.2 \mathrm{~A}$

19 Typ. switching losses
$E=f\left(R_{\mathrm{G}}\right)$, inductive load, $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{D S}=380 \mathrm{~V}, V_{G S}=0 /+13 \mathrm{~V}, I_{D}=3.2 \mathrm{~A}$

18 Typ. switching losses

$E=f\left(I_{D}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, R_{\mathrm{G}}=20 \Omega$

20 Avalanche SOA

$I_{\mathrm{AR}}=f\left(t_{\mathrm{AR}}\right)$
par.: $T_{j} \leq 150^{\circ} \mathrm{C}$

21 Avalanche energy
$E_{\text {AS }}=f\left(T_{\mathrm{j}}\right)$
par.: $I_{D}=2.4 \mathrm{~A}, V_{D D}=50 \mathrm{~V}$

23 Avalanche power losses
$P_{\text {AR }}=f(f)$
parameter: $E_{A R}=0.2 \mathrm{~mJ}$

22 Drain-source breakdown voltage
$V_{(\mathrm{BR}) \mathrm{DSS}}=f\left(T_{\mathrm{j}}\right)$

24 Typ. capacitances
$C=f\left(V_{D S}\right)$
parameter: $V_{\mathrm{GS}}=0 \mathrm{~V}, f=1 \mathrm{MHz}$

25 Typ. $C_{\text {oss }}$ stored energy
$E_{\mathrm{oss}}=f\left(V_{\mathrm{DS}}\right)$

Definition of diodes switching characteristics

PG-TO263-3-2/ PG-TO263-3-5/ PG-TO263-3-22

DIM	MILLIMETERS		INCHES					
	MIN	MAX	MIN	MAX				
A	4.300	4.572	0.169	0.180				
A1	0.000	0.254	0.000	0.010				
b	0.650	0.850	0.026	0.033				
b2	0.950	1.321	0.037	0.052				
c	0.330	0.650	0.013	0.026				
c2	0.170	1.400	0.046	0.055				
D	8.509	9.450	0.335	0.372				
D1	7.100	-	0.280	-				
E	9.800	10.312	0.386	0.406				
E1	6.500		0.256					
e	2.540						0.100	
e1								0.200
N	2		0.575	2				
H	14.605	15.875	0.087	0.625				
L	2.200	3.000	0.118					
L1	-	1.600	0.039	0.063				
L2	1.000	1.778	0.632	0.070				
F1	16.050	16.250	0.366	0.374				
F2	9.300	9.500	0.177	0.185				
F3	4.500	4.700	0.421	0.429				
F4	10.700	10.900	0.143	0.151				
F5	3.630	3.830	0.043	0.051				
F6	$\mathbf{1 . 1 0 0}$	$\mathbf{1 . 3 0 0}$						

REFERENCE JEDEC TO263	
SCALE	
EUROPEAN PROJECTION	
ISILE	
TO263_2	

Published by
Infineon Technologies AG
81726 München
Germany
© Infineon Technologies AG 2006
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

