

PG-TO-247-3

GCE

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

- Lower Eoff compared to previous generation
- Short circuit withstand time 10 μ s
- Designed for:
 - Motor controls
 - Inverter
 - SMPS
- NPT-Technology offers:
 - very tight parameter distribution
 - high ruggedness, temperature stable behaviour
 - parallel switching capability
- Qualified according to JEDEC¹ for target applications
- Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models : <u>http://www.infineon.com/igbt/</u>

Туре	V _{CE}	I _C	$E_{ m off}$	Tj	Marking	Package
SKW07N120	1200V	8A	0.7mJ	150°C	K07N120	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	1200	V
DC collector current	I _C		Α
$T_{\rm C} = 25^{\circ}{\rm C}$		16.5	
$T_{\rm C} = 100^{\circ}{\rm C}$		7.9	
Pulsed collector current, t_p limited by T_{jmax}	<i>I</i> _{Cpuls}	27	
Turn off safe operating area	-	27	
$V_{CE} \le 1200 \text{V}, \ T_j \le 150^{\circ} \text{C}$			
Diode forward current	I _F		
$T_{\rm C} = 25^{\circ}{\rm C}$		13	
$T_{\rm C} = 100^{\circ}{\rm C}$		7	
Diode pulsed current, t_p limited by T_{jmax}	I _{Fpuls}	27	
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time ²	t _{SC}	10	μS
$V_{ m GE}$ = 15V, 100V $\leq V_{ m CC} \leq$ 1200V, $T_{ m j} \leq$ 150°C			
Power dissipation	P _{tot}	125	W
$T_{\rm C} = 25^{\circ}{\rm C}$			
Operating junction and storage temperature	T _j , T _{stg}	-55+150	°C
Soldering temperature,	Ts	260	
wavesoldering, 1.6mm (0.063 in.) from case for 10s			

¹ J-STD-020 and JESD-022

^{2} Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

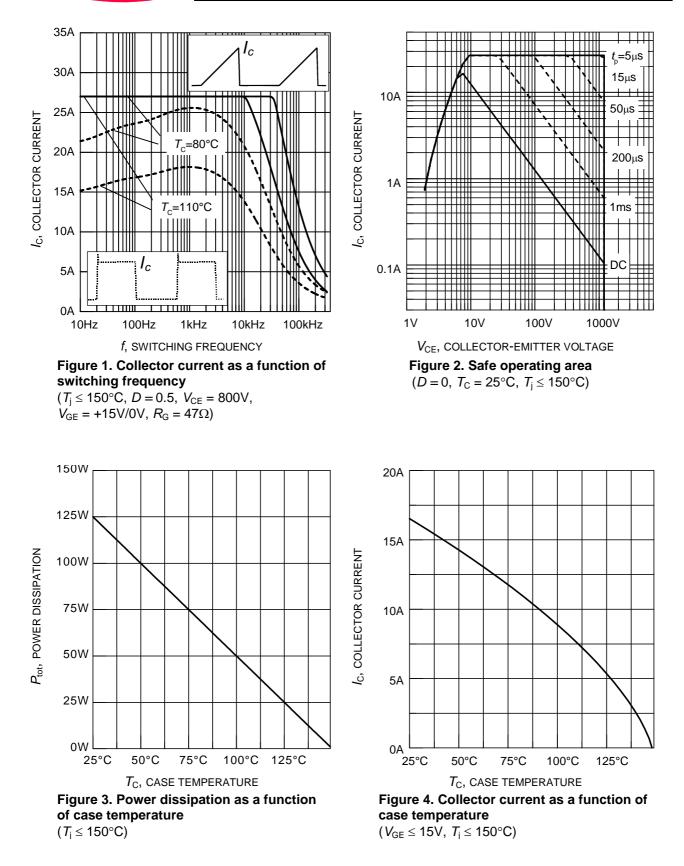
Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		1	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		2.5	
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

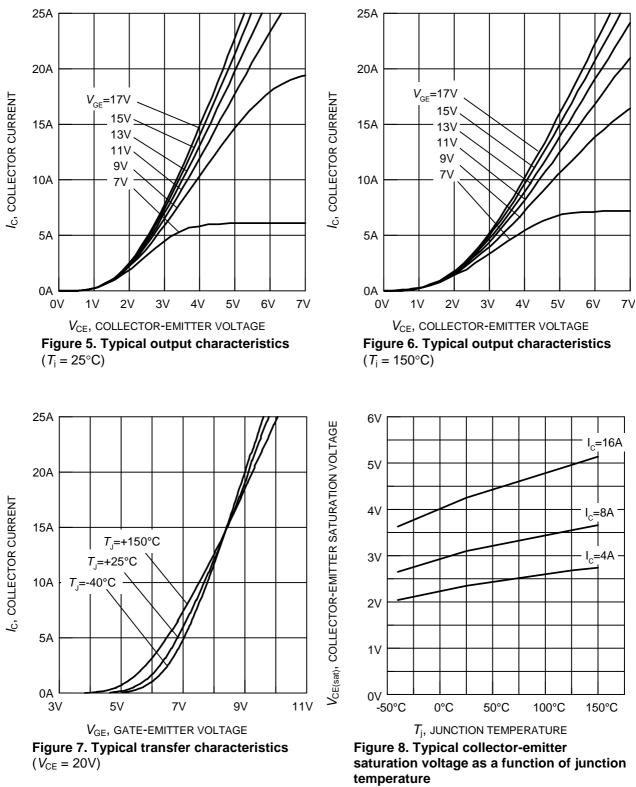
Poromotor	Symbol	Conditions	Value			11
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Static Characteristic		·				•
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE} = 0V, I_{\rm C} = 500 \mu A$	1200	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 \rm V, \ I_{\rm C} = 8 \rm A$				
		<i>T</i> _j =25°C	2.5	3.1	3.6	
		<i>T</i> _j =150°C	-	3.7	4.3	
Diode forward voltage	V _F	$V_{GE}=0V, I_{F}=7A$				
		T _j =25°C		2.0	2.4	
		<i>T</i> _j =150°C	-	1.75		
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C} = 350 \mu {\rm A}, V_{\rm CE} = V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	V _{CE} =1200V,V _{GE} =0V				μA
		T _j =25°C	-	-	100	
		<i>T</i> _j =150°C	-	-	400	
Gate-emitter leakage current	I _{GES}	$V_{CE}=0V, V_{GE}=20V$	-	-	100	nA
Transconductance	$g_{ m fs}$	$V_{\rm CE} = 20 \text{V}, \ I_{\rm C} = 8 \text{A}$		6	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	720	870	pF
Output capacitance	Coss	$V_{\rm GE}=0V$,	-	90	110	
Reverse transfer capacitance	Crss	f=1MHz	-	40	50	
Gate charge	Q _{Gate}	$V_{\rm CC} = 960 \text{V}, I_{\rm C} = 8 \text{A}$	-	70	90	nC
		$V_{GE} = 15 V$				
Internal emitter inductance	LE		-	13	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	$V_{GE} = 15V, t_{SC} \le 10 \mu s$ 100V $\le V_{CC} \le 1200V, T_j \le 150^{\circ}C$	-	75	-	A

 $^{1)}$ Allowed number of short circuits: <1000; time between short circuits: >1s.

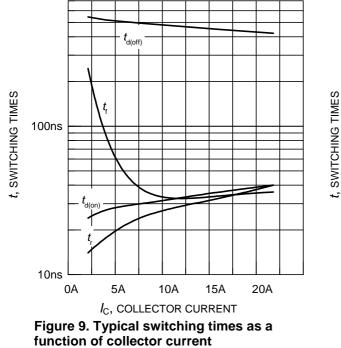
Switching Characteristic, Inductive Load, at T_j =25 °C

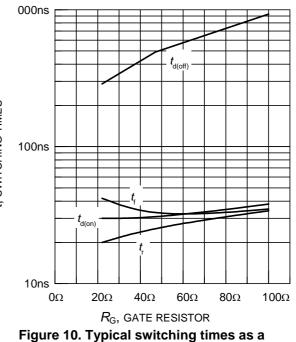

Demonster	Symbol	Conditions	Value			
Parameter			min.	typ.	max.	Unit
IGBT Characteristic		· ·				
Turn-on delay time	t _{d(on)}	<i>T</i> _j =25°C,	-	27	35	ns
Rise time	t _r	$V_{\rm CC} = 800 \text{V}, I_{\rm C} = 8 \text{A},$	-	29	38	
Turn-off delay time	t _{d(off)}	$V_{\rm GE} = 15 {\rm V} / 0 {\rm V}$,	-	440	570	
Fall time	t _f	$R_{G}=47\Omega,$ $L_{\sigma}^{(1)}=180 \text{ nH},$ $-C_{\sigma}^{(1)}=40 \text{ pF}$ $= \text{Energy losses include}$ "tail" and diode reverse recovery.	-	21	27	
Turn-on energy	Eon		-	0.6	0.8	mJ
Turn-off energy	E _{off}		-	0.4	0.55	
Total switching energy	Ets		-	1.0	1.35	
Anti-Parallel Diode Characteristic	•			•	•	
Diode reverse recovery time	t _{rr}	$T_{\rm j}=25^{\circ}{\rm C},$	-	60		ns
	ts	V _R =800V, <i>I</i> _F =8A,	-			
	t _F	di _F /dt=400A/µs	-			
Diode reverse recovery charge	Q _{rr}		-	0.3		μC
Diode peak reverse recovery current	<i>I</i> _{rrm}		-	9		А
Diode peak rate of fall of reverse recovery current during $t_{\rm F}$	di _{rr} /dt		-	400		A/μs

Switching Characteristic, Inductive Load, at T_i =150 °C

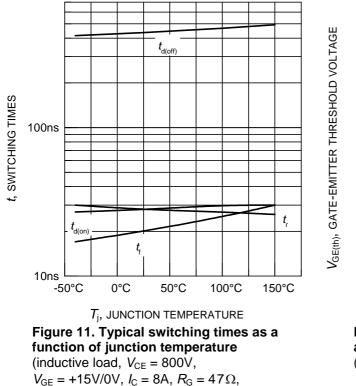

Demonster	0		Value			
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic		·				
Turn-on delay time	t _{d(on)}	<i>T</i> _j =150°C	-	30	36	ns
Rise time	t _r	V _{CC} =800V,	-	26	31	
Turn-off delay time	t _{d(off)}	I _C =8A,	-	490	590	
Fall time	t _f	$V_{GE}=15V/0V$,	-	30	36	
Turn-on energy	Eon	$R_{G}=47\Omega,$ $L_{\sigma}^{(1)}=180$ nH, $C_{\sigma}^{(1)}=40$ pF	-	1.0	1.2	mJ
Turn-off energy	E _{off}		-	0.7	0.9	
Total switching energy	E _{ts}	Energy losses include "tail" and diode reverse recovery.	-	1.7	2.1	
Anti-Parallel Diode Characteristic						
Diode reverse recovery time	t _{rr}	<i>T</i> _j =150°C	-	170		ns
	ts	V _R =800V, <i>I</i> _F =8A,	-			
	t _F	di _F /dt=500A/µs	-			
Diode reverse recovery charge	Q _{rr}		-	1.1		μC
Diode peak reverse recovery current	I _{rrm}]	-	15		А
Diode peak rate of fall of reverse recovery current during $t_{\rm F}$	di _{rr} /dt		-	110		A/µs

 $^{1)}$ Leakage inductance L_{σ} and stray capacity C_{σ} due to dynamic test circuit in figure E.





 $(V_{GE} = 15V)$



(inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 800$ V, $V_{GE} = +15$ V/0V, $R_G = 47\Omega$, dynamic test circuit in Fig.E)

function of gate resistor (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 800$ V, $V_{GE} = +15$ V/0V, $I_C = 8$ A, dynamic test circuit in Fig.E)

6V

5V max. 4V typ ЗV min. 2V 1V 0V -50°C 0°C 50°C 100°C 150°C T_{i} , JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature $(I_{\rm C} = 0.3 {\rm mA})$

Downloaded from Arrow.com.

dynamic test circuit in Fig.E)

 E_{ts} *) Eon and Ets include losses 5mJ due to diode recovery. E, SWITCHING ENERGY LOSSES 4mJ E_{on}^{*} 3mJ 2mJ 1mJ 0mJ 10A 20A 0A 5A 15A $I_{\rm C}$, COLLECTOR CURRENT

Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 800$ V, $V_{GE} = +15$ V/0V, $R_G = 47\Omega$, dynamic test circuit in Fig.E)

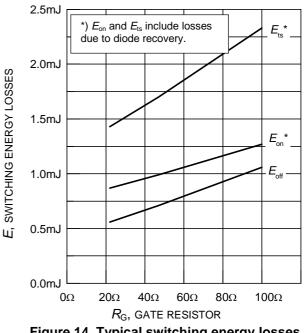
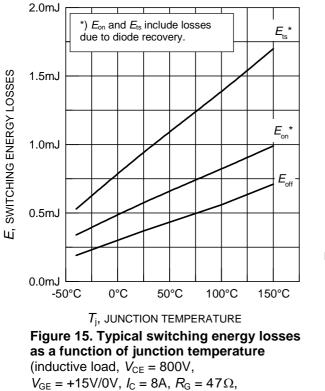
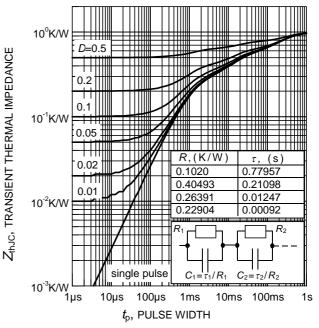
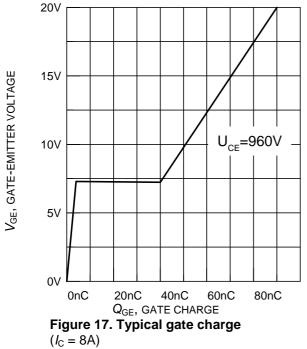
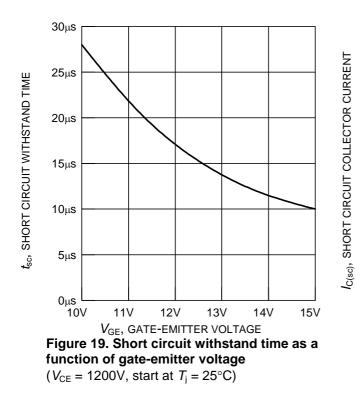
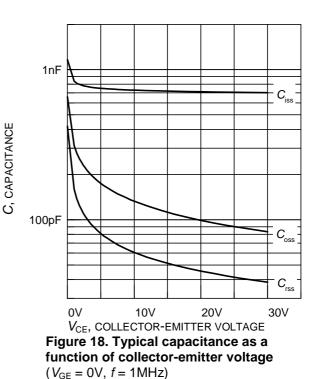
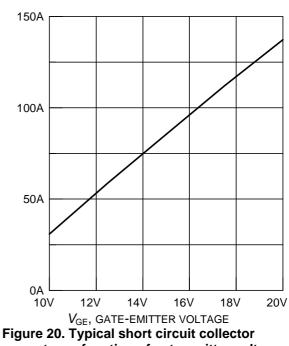
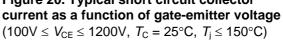



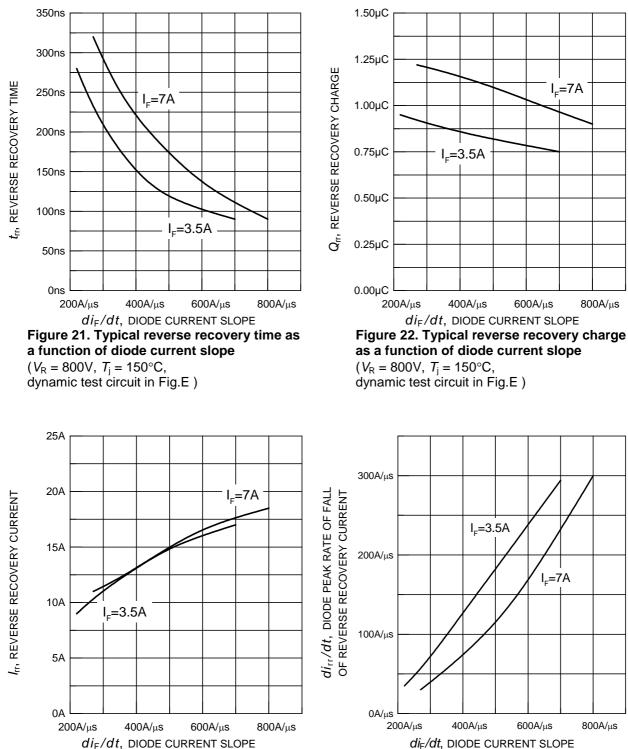
Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 800$ V, $V_{GE} = +15$ V/0V, $I_C = 8$ A, dynamic test circuit in Fig.E)

dynamic test circuit in Fig.E)


Figure 16. IGBT transient thermal impedance as a function of pulse width $(D = t_p / T)$





I_c=7A

800A/µs

di_F/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope

 $(V_{\rm R} = 800 \rm V, T_{\rm i} = 150^{\circ} \rm C,$ dynamic test circuit in Fig.E)

Downloaded from Arrow.com.

Figure 23. Typical reverse recovery current

as a function of diode current slope

 $(V_{\rm R} = 800 \rm V, T_i = 150^{\circ} \rm C,$

dynamic test circuit in Fig.E)

800A/µs

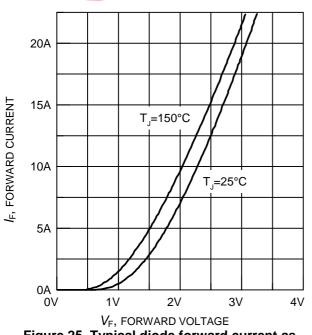
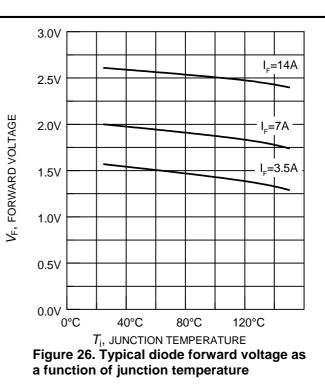
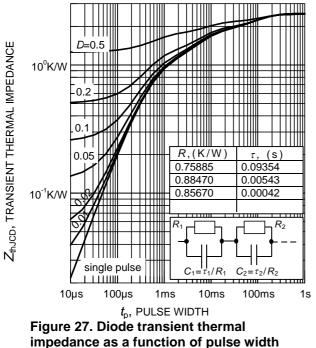
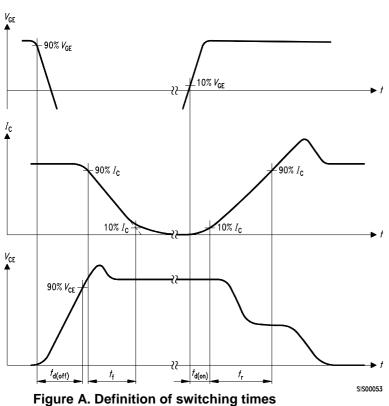
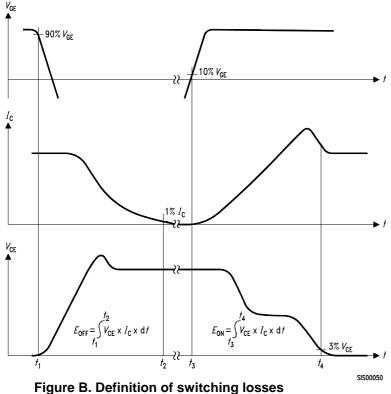




Figure 25. Typical diode forward current as a function of forward voltage


 $(D = t_{\rm p} / T)$



PG-TO247-3

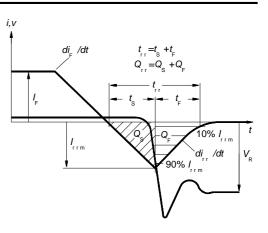


Figure C. Definition of diodes switching characteristics

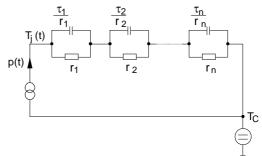


Figure D. Thermal equivalent circuit

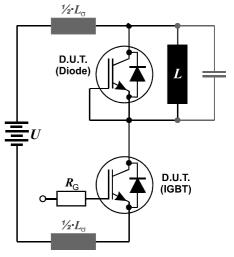


Figure E. Dynamic test circuit Leakage inductance L_{σ} =180nH, and stray capacity C_{σ} =40pF.

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.