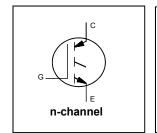
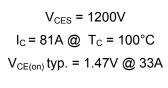


AUTOMOTIVE GRADE

AUIRGDC0250

Features


- Low V_{CE (on)} Planar IGBT Technology
- Low Switching Losses
- Square RBSOA
- 100% of the Parts Tested for ILM
- Positive V_{CE (on)} Temperature Coefficient
- Reflow Capable per JDSD22-A113
- Lead-Free, RoHS Compliant
- Automotive Qualified *


Benefits


- Device optimized for soft switching applications
- High Efficiency due to Low V_{CE(on)}, low switching losses
- Rugged transient performance for increased reliability
- · Excellent current sharing in parallel operation
- Low EMI

Application

- PTC Heater
- Relay Replacement

G	С	E
Gate	Collector	Emitter

Page Part Number	Standard Pack			Orderable Part Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
AUIRGDC0250	Super-TO-220	Tube	50	AUIRGDC0250	

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

_	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	141④	
I _C @ T _C = 100°C	Continuous Collector Current	81	
I _{CM}	Pulse Collector Current, V _{GE} = 15V ②	99	Α
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ①	99	
V_{GE}	Continuous Gate-to-Emitter Voltage	±20	V
	Transient Gate-to-Emitter Voltage	±30	V
P _D @ T _C = 25°C	Maximum Power Dissipation	543	۱۸/
$P_D @ T_C = 100^{\circ}C$	Maximum Power Dissipation	217	W
T_J	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec. (Through Hole Mounting)	300 (0.063 in. (1.6mm) from case)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance Junction-to-Case (each IGBT) ③		0.23	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)	0.50		°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient (typical socket mount)		62	

^{*} Qualification standards can be found at www.infineon.com

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200		_	V	$V_{GE} = 0V, I_{C} = 250\mu A$
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage	_	1.2	_	V/°C	V _{GE} = 0V, I _C = 1mA (25°C-150°C)
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	1.47	1.8	V	$I_C = 33A$, $V_{GE} = 15V$, $T_J = 25$ °C
		_	1.56	_	V	$I_C = 33A$, $V_{GE} = 15V$, $T_J = 150$ °C
$V_{GE(th)}$	Gate Threshold Voltage	3.0		6.0	V	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
$\Delta V_{GE(th)}/\Delta TJ$	Threshold Voltage temp. coefficient		-15	_	mV/°C	$V_{CE} = V_{GE}, I_C = 250\mu A (25^{\circ}C-150^{\circ}C)$
gfe	Forward Transconductance		30	_	S	$V_{CE} = 50V$, $I_{C} = 33A$,PW = 20μ S
I _{CES}	Collector-to-Emitter Leakage Current	_	_	250		$V_{GE} = 0V, V_{CE} = 1200V, T_{J} = 25^{\circ}C$
		_	_	1000	μA	V _{GE} = 0V, V _{CE} = 1200V,T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current		_	±100	nA	V _{GE} = ±20V

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	_	151	227		I _C = 33A
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	26	39	nC	V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)		62	93		V _{CC} = 600V
E _{off}	Turn-Off Switching Loss		15	16	mJ	$I_C = 33A$, $V_{CC} = 600V$, $V_{GE} = 15V$
$t_{d(off)}$	Turn-Off delay time	_	485	616	20	$R_G = 5\Omega$, L = 400 μ H, $T_J = 25$ °C
t _f	Fall time	_	1193	1371	ns	Energy losses include tail
E _{off}	Turn-Off Switching Loss	_	29	_	mJ	$I_C = 33A$, $V_{CC} = 600V$, $V_{GE} = 15V$
$t_{d(off)}$	Turn-Off delay time	_	689	_	ns	$R_G = 5\Omega$, L = 400 μ H, $T_J = 150$ °C
t _f	Fall time	_	2462	_	115	Energy losses include tail
C _{ies}	Input Capacitance	_	3804	_		V _{GE} = 0V
C _{oes}	Output Capacitance	_	161	_	pF	V _{CC} = 30V
C _{res}	Reverse Transfer Capacitance	_	31	_		f = 1.0Mhz
RBSOA	Reverse Bias Safe Operating Area	FUL	FULL SQUARE			$T_J = 150$ °C, $I_C = 99A$ $V_{CC} = 960V$, $V_D \le 1200V$ $Rg = 5\Omega$, $V_{GE} = +20V$ to $0V$

Notes:

- ① V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 400 μ H, R_{G} = 5 Ω .
- ② Pulse width limited by max. junction temperature.
- ③ R_{θ} is measured at T_J approximately 90°C.
- 4 Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

2

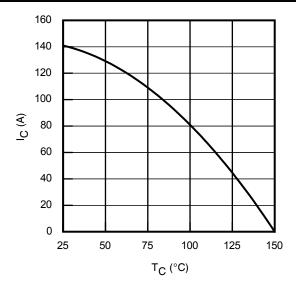
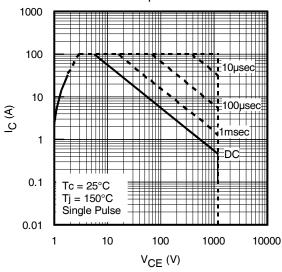



Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

 $\label{eq:fig.3} \textbf{Fig. 3} - \text{Forward SOA} \\ \textbf{T}_{C} = 25^{\circ}\text{C}, \, \textbf{T}_{J} \leq \,\, 150^{\circ}\text{C}; \, \textbf{V}_{GE} = \!15\text{V}$

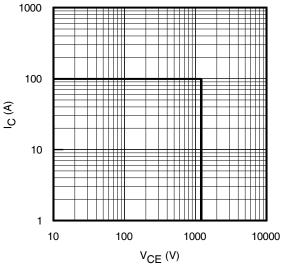
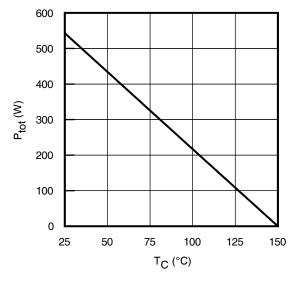



Fig. 5 - Reverse Bias SOA $T_J = 150^{\circ}\text{C}$; $V_{GE} = 20\text{V}$

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 4 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature

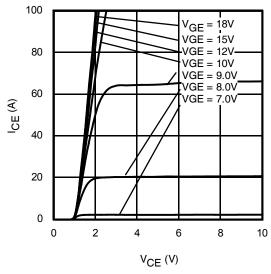
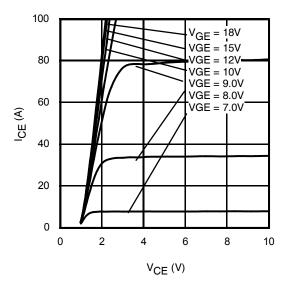



Fig. 6 - Typ. IGBT Output Characteristics $T_J = -40$ °C; $tp = 20\mu s$

Fig. 7 - Typ. IGBT Output Characteristics T_J = 25°C; tp =20µs

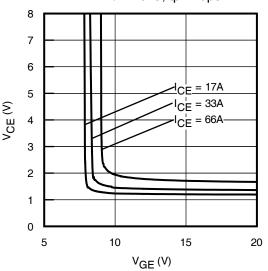


Fig. 9 - Typical V_{CE} vs. V_{GE} T_{J} = -40°C

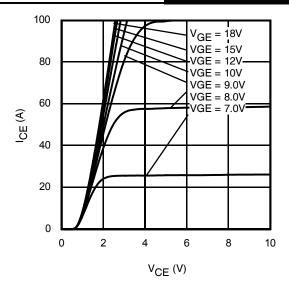



Fig. 11 - Typical V_{CE} vs. V_{GE} T_J = 150°C

Fig. 8 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 20µs

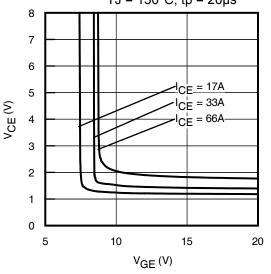
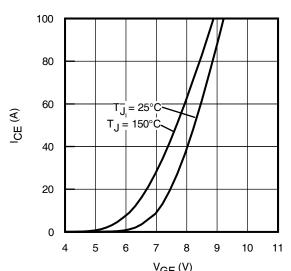



Fig. 10 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$

 V_{GE} (V) **Fig. 12** - Typ. Transfer Characteristics VCE = 50V; tp = 20µs

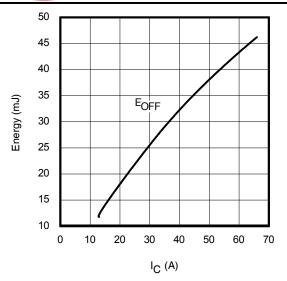


Fig. 13 - Typ. Energy Loss vs. I_C T_J = 150°C; L = 400 μ H; V_{CE} = 600V, R_G = 5 Ω ; V_{GE} = 15V

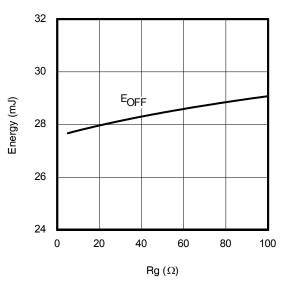


Fig. 15 - Typ. Energy Loss vs. R_G T_J = 150°C; L = 400 μ H; V_{CE} = 600V, I_{CE} = 33A; V_{GE} = 15V

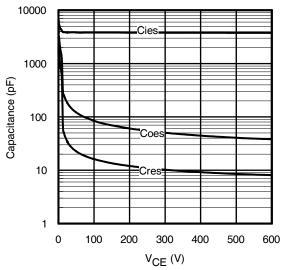


Fig. 17 - Typ. Capacitance vs. V_{CE} V_{GE} = 0V; f = 1MHz

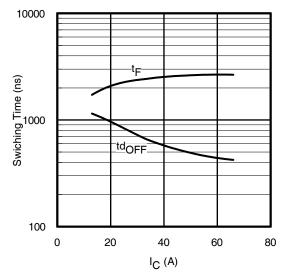


Fig. 14 - Typ. Switching Time vs. I_C T_J = 150°C; L = 400 μ H; V_{CE} = 600V, R_G = 5 Ω ; V_{GE} = 15V

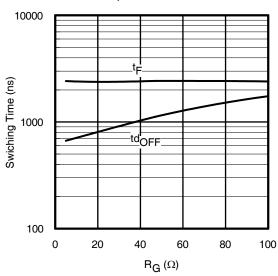


Fig. 16 - Typ. Energy Loss vs. R_G T_J = 150°C; L = 400 μ H; V_{CE} = 600V, I_{CE} = 33A; V_{GE} = 15V

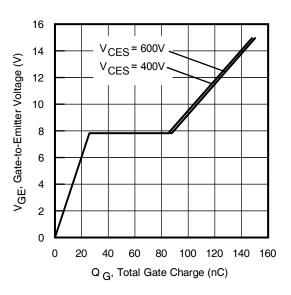


Fig. 18 - Typical Gate Charge vs. V_{GE} $I_{CE} = 33A$; L = 2.0mH

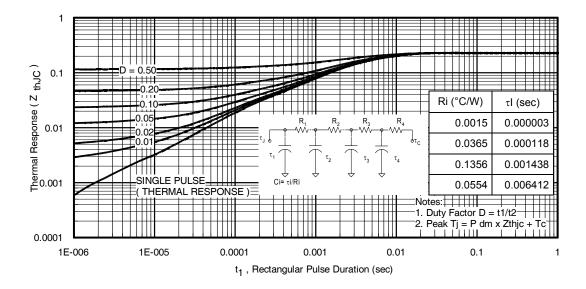


Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

6

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.2 - RBSOA Circuit

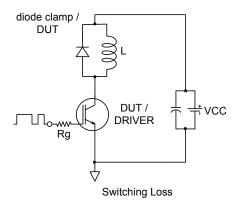


Fig.C.T.3 - Switching Loss Circuit

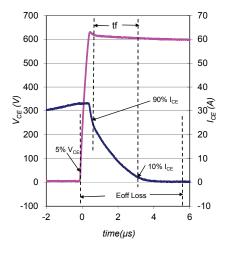
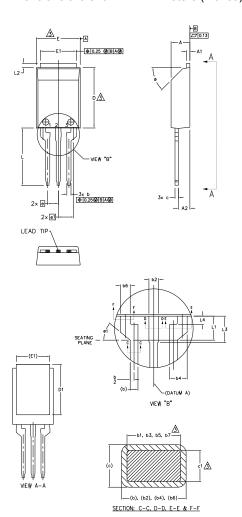



Fig. WF1 - Typ. Turn-off Loss Waveform @ T_J = 150°C using Fig. CT.3

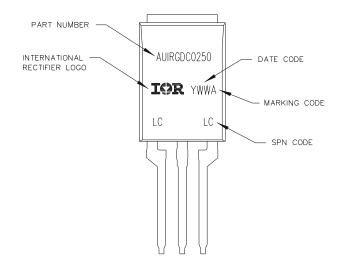
Super-TO-220 Package Outline

Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS 61, 63, 65 & c1 APPLY TO BASE METAL ONLY.
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTER EXTREMES OF THE PLASTIC BODY.
- 4.- ALL DIMENSIONS SHOWN IN MILLIMETERS.
- 5.- CONTROLLING DIMENSION: MILLIMETER.
- 6.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-273AA.

SYM	DIMENSIONS			N	
B 0	MILLIM	ETERS	INC	HES	O T
L	MIN.	MAX.	MIN.	MAX.	T E S
Α	4.34	4.74	.171	.187	
A1	0.50	1.00	.020	.039	
A2	2.50	3.00	.098	.118	
b	0.90	1.30	.035	.051	
b1	0.80	1.10	.031	.043	2
b2	1.25	1.65	.049	.065	
b3	1.10	1.55	.043	.061	2
b4	2.35	2.55	.093	.100	
b5	2.30	2.50	.091	.098	2
b6	1.25	1.65	.049	.065	
ь7	1.10	1.55	.043	.061	2
С	0.70	1.00	.028	.039	
c1	0.60	0.90	.024	.035	2
D	14.00	15.00	.0551	.591	3
D1	12.50	13.50	.492	.531	
Ε	10.00	11.00	.394	.433	3
E1	8.00	9.00	.315	.354	
е	2.55	BSC	.100	BSC	
e1	3.66	BSC	.144	BSC	
L	13.00	14.50	.512	.571	
L1	3.00	3.50	.118	.138	
L2	0.50	1.50	.020	.059	
L3	3.50	4.00	.138	.157	
L4	-	1.50	-	.059	
Ø	42.5°	47.5*	42.5*	47.5°	
ø1	-	42.5°	-	42.5°	

LEAD ASSIGNMENTS


<u>MOSFET</u>

- 1.- GATE
- 2.- DRAIN 3.- SOURCE 4.- DRAIN

<u>IGBT</u>

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

Super-TO-220 Part Marking Information

Qualification Information

Qualification in	iorination			
		Automotive (per AEC-Q101)		
Qualification Le		Comments: This part number (s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.		
Moisture Sensitivity Level		3L- Super TO-220	MSL1	
	Machine Model	Class M4 [†] (+/- 800V) AEC-Q101-002		
ESD	Human Body Model	Class H3A [†] (+/- 6000V) AEC-Q101-001		
	Charged Device Model	Class C5 [†] (+/, 2000\/)		
RoHS Compliant		Yes		

[†] Highest passing voltage.

Revision History

Revision	Date	Subjects (major changes since last revision)
2.0	9/2/2014	Final Datasheet
2.1	12/1/2014	 Updated with V_{(BR)CES} and V_{GE(th)} conditions
2.2	3/2/2015	Updated with minor changes
2.3	8/31/2017	Updated with Infineon logo
2.4	03/01/2018	Updated with qualification level
2.5	11/06/2018	Updated maximum V _{CE(on)}
2.6	4/18/2019	Updated typical Vce(on) value @ 150°C

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2018 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

10