

GC

PG-TO-247-3

High Speed IGBT in NPT-technology

- 30% lower E_{off} compared to previous generation
- Short circuit withstand time 10 μ s
- Designed for operation above 30 kHz
- NPT-Technology for 600V applications offers:
 - parallel switching capability
 - moderate Eoff increase with temperature
 - very tight parameter distribution
- High ruggedness, temperature stable behaviour
- Pb-free lead plating; RoHS compliant ٠
- Qualified according to JEDEC¹ for target applications •
- Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ •

Туре	V _{CE}	l _c	E _{off25}	Tj	Marking	Package
SGW50N60HS	600V	50A	0.88mJ	150°C	G50N60HS	PG-TO-247-3

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CE}	600	V
DC collector current	/ _C		А
$T_{\rm C} = 25^{\circ}{\rm C}$		100	
$T_{\rm C}$ = 100°C		50	
Pulsed collector current, t_p limited by T_{jmax}	/ _{Cpuls}	150	
Turn off safe operating area	-	150	
$V_{CE} \leq 600V, \ T_j \leq 150^{\circ}C$			
Avalanche energy single pulse $I_{\rm C}$ = 50A, V_{CC} =50V, R_{GE} =25 Ω start T_{J} =25°C	E _{AS}	280	mJ
Gate-emitter voltage static transient ($t_p < 1\mu s$, $D < 0.05$)	V _{GE}	±20 ±30	V
Short circuit withstand time ²⁾	tsc	10	μS
$V_{\rm GE}$ = 15V, $V_{\rm CC} \le 600$ V, $T_{\rm j} \le 150^{\circ}$ C			
Power dissipation	P _{tot}	416	W
$T_{\rm C} = 25^{\circ}{\rm C}$			
Operating junction and storage temperature	T _j , T _{stg}	-55+150	°C
Time limited operating junction temperature for $t < 150h$	T _{j(tl)}	175	
Soldering temperature, 1.6mm (0.063 in.) from case for 10s	-	260	

¹ J-STD-020 and JESD-022 ²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	$R_{\rm thJC}$		0.3	K/W
junction – case				
Thermal resistance, junction – ambient	R _{thJA}		40	

Electrical Characteristic, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value			Unit
Falameter	Symbol	Conditions	min.	Тур.	max.	om
Static Characteristic						
Collector-emitter breakdown voltage	$V_{(BR)CES}$	V_{GE} =0V, I_{C} =500 μ A	600	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE}$ = 15V, $I_{\rm C}$ =50A				
		<i>T</i> _j =25°C	-	2.8	3.15	
		<i>T</i> _j =150°C	-	3.15	-	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{\rm C}$ =1mA, $V_{\rm CE}$ = $V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	V_{CE} =600V, V_{GE} =0V				μA
		<i>T</i> _j =25°C	-	-	40	
		<i>T</i> _j =150°C	-	-	3000	
Gate-emitter leakage current	I _{GES}	$V_{CE}=0V, V_{GE}=20V$	-	-	100	nA
Transconductance	$g_{\sf fs}$	$V_{\rm CE}$ =20V, $I_{\rm C}$ =50A	-	31	-	S

Dynamic Characteristic

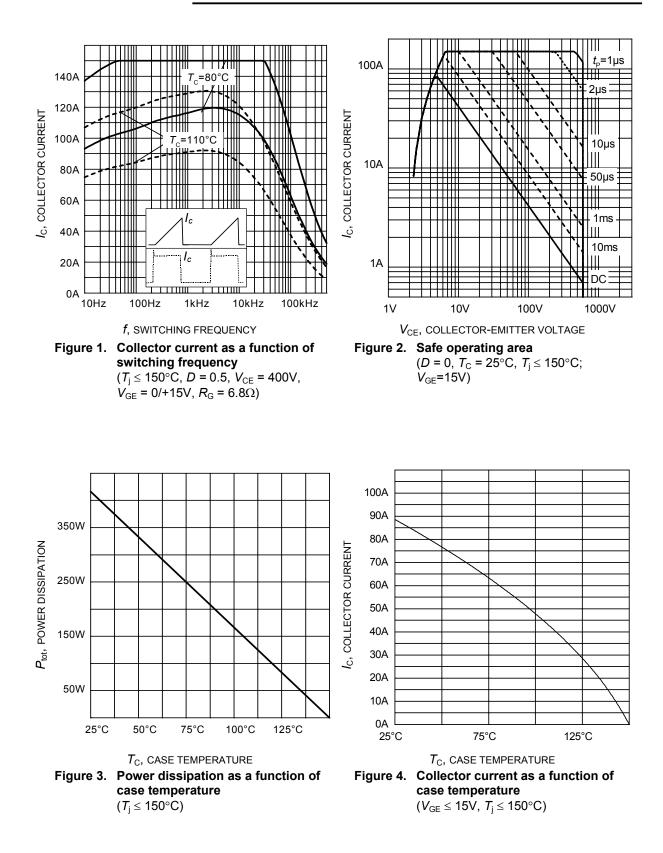
Input capacitance	Ciss	V _{CE} =25V,	-	2572	-	pF
Output capacitance	Coss	V _{GE} =0V,	-	245	-	
Reverse transfer capacitance	Crss	f=1MHz	-	158	-	
Gate charge	Q _{Gate}	V _{CC} =480V, <i>I</i> _C =50A	-	179	-	nC
		V _{GE} =15V				
Internal emitter inductance	LE		-	13	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	V_{GE} =15V, t_{SC} ≤10µs V_{CC} ≤ 600V, T_{j} ≤ 150°C	-	471	-	A

 $^{1)}$ Allowed number of short circuits: <1000; time between short circuits: >1s.

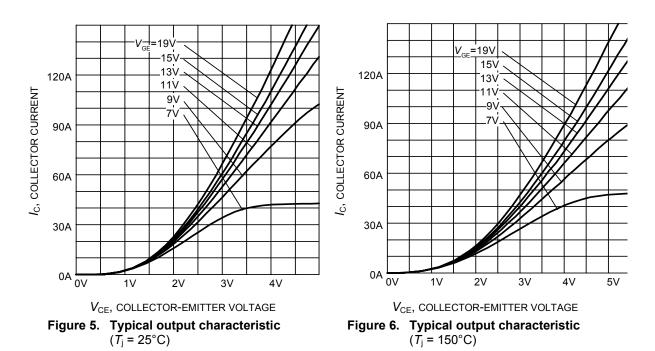
_

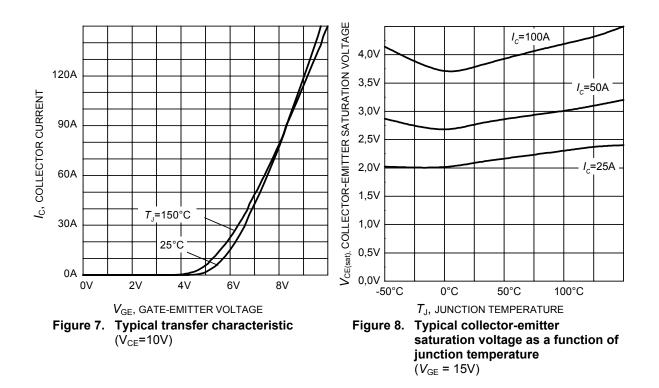
Switching Characteristic, Inductive Load, at Ti=25 °C

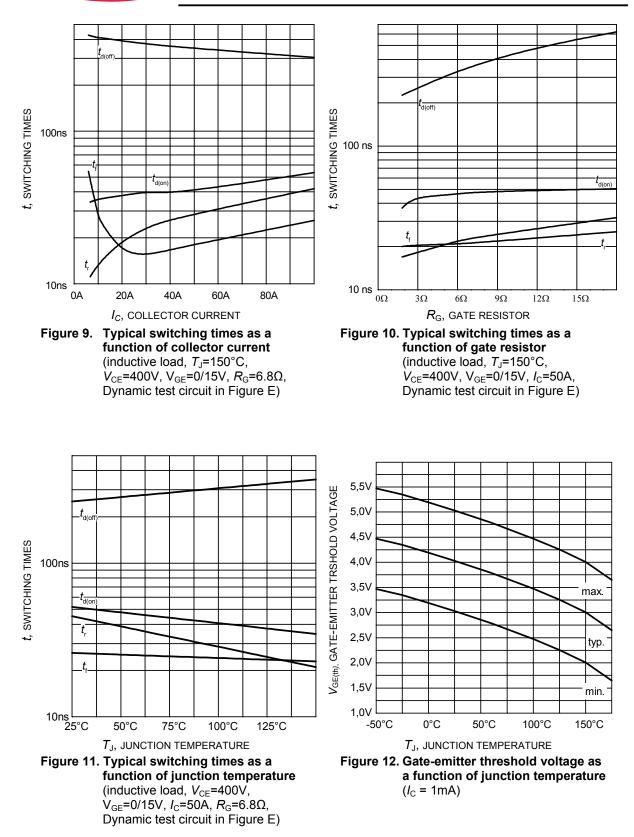
Parameter	Symbol	Conditions	Value			Unit
	Symbol		min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =25°C,	-	47	-	ns
Rise time	t _r	V_{CC} =400V, I_C =50A, V_{GE} =0/15V, R_G =6.8Ω $L_{\sigma}^{(1)}$ =55nH, $C_{\sigma}^{(1)}$ =40pF Energy losses include "tail" and diode reverse recovery ²).	-	32	-	
Turn-off delay time	$t_{d(off)}$		-	310	-	
Fall time	t _f		-	16	-	
Turn-on energy	Eon		-	1.08	-	mJ
Turn-off energy	E _{off}		-	0.88	-	
Total switching energy	Ets		-	1.96	-	

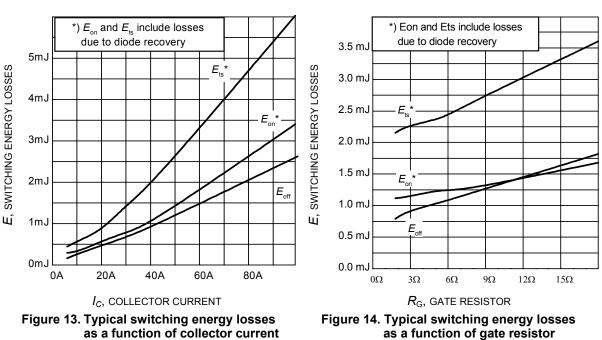

Switching Characteristic, Inductive Load, at Ti=150 °C

Parameter	Symbol	Conditions	Value			Unit
	Symbol		min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	<i>T</i> _j =150°C	-	50	-	ns
Rise time	tr	$V_{\rm CC} = 400 V, I_{\rm C} = 50 A,$	-	28	-	
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G = 1.8Ω	-	225	-	
Fall time	t _f	$L_{\sigma}^{(1)} = 60 \text{ nH},$ $C_{\sigma}^{(1)} = 40 \text{ pF}$ Energy losses include "tail" and diode reverse recovery ²).	-	14	-	
Turn-on energy	Eon		-	1	-	mJ
Turn-off energy	E _{off}		-	0.90	-]
Total switching energy	E _{ts}		-	1.9	-	
Turn-on delay time	$t_{d(on)}$	<i>T</i> _i =150°C	-	48	-	ns
Rise time	t _r	$V_{\rm CC} = 400 V, I_{\rm C} = 50 A,$	-	31	-	
Turn-off delay time	$t_{d(off)}$	V _{GE} =0/15V, R _G = 6.8Ω	-	350	-	
Fall time	t _f	$L_{\sigma}^{(1)} = 60$ nH, $C_{\sigma}^{(1)} = 40$ pF Energy losses include "tail" and diode reverse recovery ²).	-	20	-	
Turn-on energy	Eon		-	1.5	-	mJ
Turn-off energy	E _{off}		-	1.1	-	
Total switching energy	Ets		-	2.6	-	1

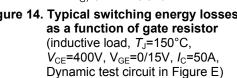

 1 Leakage inductance L_σ and Stray capacity C_σ due to test circuit in Figure E. 2 Diode used in this test is IDP45E60

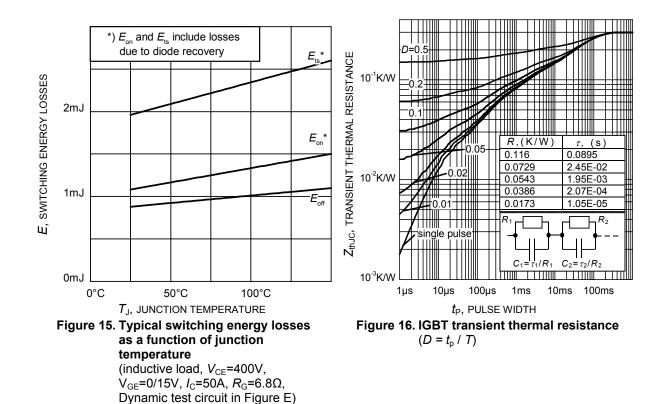


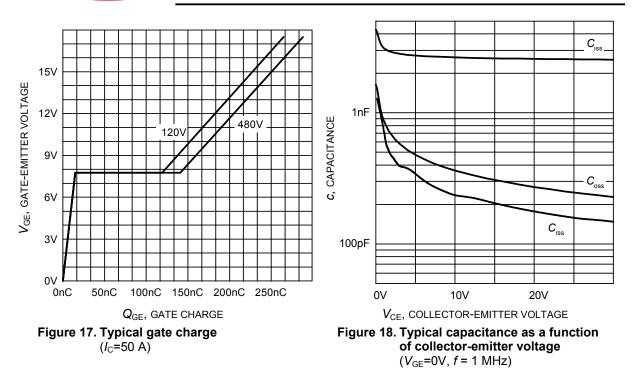




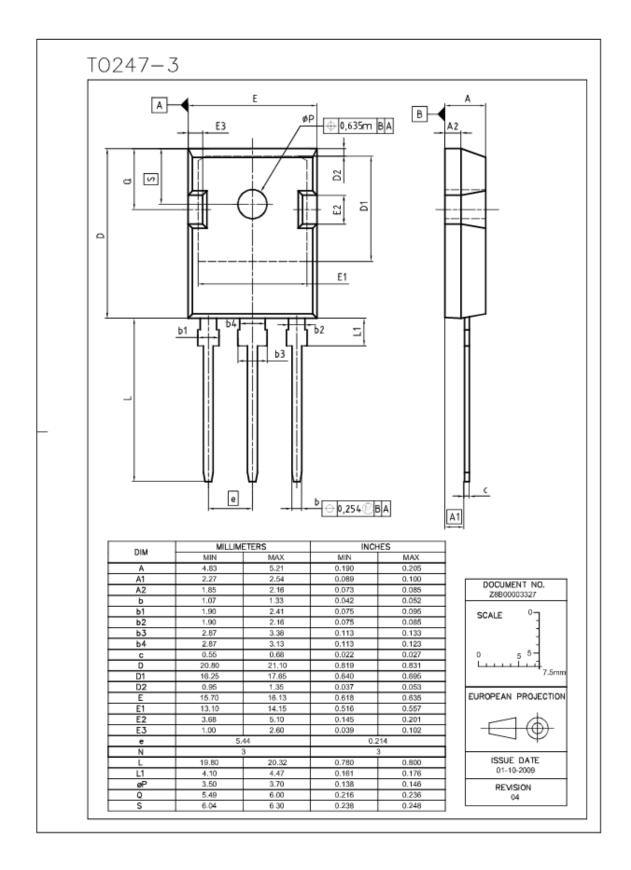
5







(inductive load, T_J =150°C, V_{CE} =400V, V_{GE} =0/15V, R_G =6.8 Ω , Dynamic test circuit in Figure E)



700A $I_{\rm c(sc)},$ short circuit collector current $t_{
m SC},$ short circuit withstand time 600A 15µs 500A 10µs 400A 300A 5µs 200A 100A 0µs 0A └── 10V 10V 11V 12V 13V 14V 12V 14V 16V 18V $V_{\rm GE}$, GATE-EMITTER VOLTAGE V_{GE} , GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a Figure 20. Typical short circuit collector function of gate-emitter voltage current as a function of gate-(V_{CE} =600V, start at T_{J} =25°C) emitter voltage $(V_{CE} \le 600V, T_{j} \le 150^{\circ}C)$

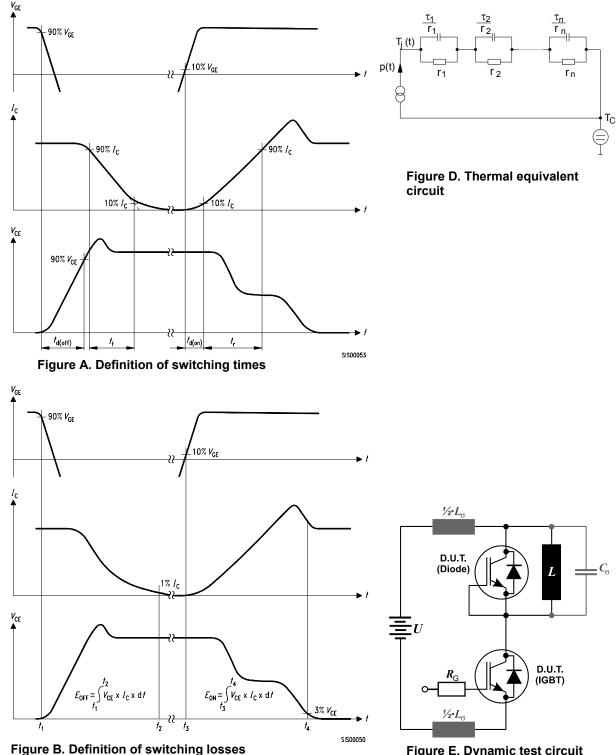


Figure E. Dynamic test circuit Leakage inductance L_{σ} =55nH and Stray capacity C_{σ} =40pF.

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support devices or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Power Semiconductors