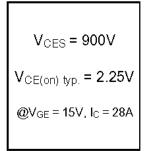
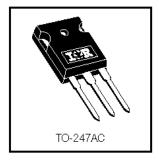

INSULATED GATE BIPOLAR TRANSISTOR


Features


- Optimized for use in Welding and Switch-Mode Power Supply applications
- Industry benchmark switching losses improve efficiency of all power supply topologies
- · 50% reduction of Eoff parameter
- · Low IGBT conduction losses
- Latest technology IGBT design offers tighter parameter distribution coupled with exceptional reliability
- Lead-Free

Benefits

- Lower switching losses allow more cost-effective operation and hence efficient replacement of largerdie MOSFETs up to 100kHz
- Of particular benefit in single-ended converters and Power Supplies 150W and higher
- Reduction in critical Eoff parameter due to minimal minority-carrier recombination coupled with low onstate losses allow maximum flexibility in device application

Apsolute Maximum Katings

	Parameter	Max.	Units	
V _{CES}	Collector-to-Emitter Breakdown Voltage	900	V	
Ic @ Tc = 25°C	Continuous Collector Current	51		
I _C @ T _C = 100°C	Continuous Collector Current	28	A	
Icm	Pulsed Collector Current 🛈	204		
I _{LM}	Clamped Inductive Load Current ②	204		
V_{GE}	Gate-to-Emitter Voltage	± 20	V	
E _{ARV}	Reverse Voltage Avalanche Energy 🕲	186	mJ	
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W	
P _D @ T _C = 100°C	Maximum Power Dissipation	78	7 "	
TJ	Operating Junction and	-55 to + 150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (0.063 in. (1.6mm from case)		

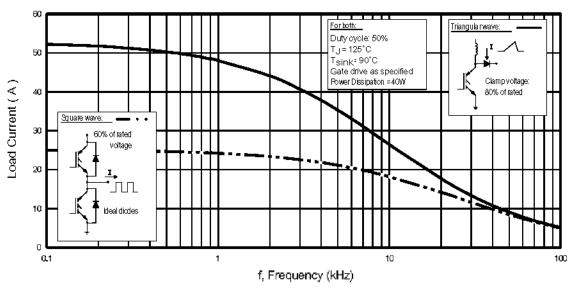
Thermal Resistance

	Parameter	Тур.	Max.	Units
Rejc	Junction-to-Case	_	0.64	
Recs	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
R _{0JA}	Junction-to-Ambient, typical socket mount	_	40	
Wt	Weight	6 (0.21)		g (oz)

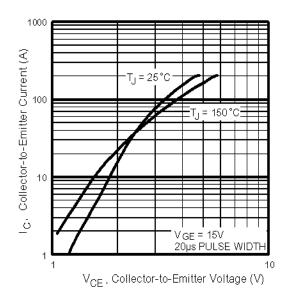
International

TOR Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

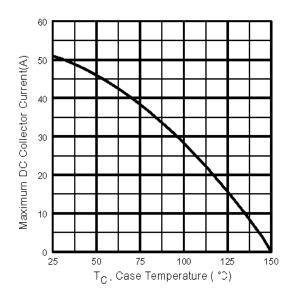

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _(BR) ces	Collector-to-Emitter Breakdown Voltage	900	_	_	V	$V_{GE} = 0V$, $I_{C} = 250 \mu A$
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage ④	18			V	$V_{GE} = 0V, I_{C} = 1.0A$
ΔV _{(BR)CES} /ΔT _J	Temperature Coeff. of Breakdown Voltage		0.295		V/°C	$V_{GE} = 0V, I_{C} = 3.5 \text{mA}$
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage	_	2.25	2.7	V	$I_C = 28A$ $V_{GE} = 15V$
		_	2.74			lc = 60A See Fig.2, 5
			2.12	_		l _C = 28A , T _{.I} = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0		6.0		$V_{CE} = V_{GE}$, $I_C = 250 \mu A$
ΔV _{GE(th)} /ΔT _J	Temperature Coeff. of Threshold Voltage		-13		mV/°C	$V_{CE} = V_{GE}$, $I_{C} = 1.0 \text{mA}$
9fe	Forward Transconductance ®	26	39		S	V _{CE} ≥ 15V, I _C = 28A
læs	Zero Gate Voltage Collector Current		_	500	μА	$V_{CE} = 0V, V_{CE} = 900V$
,œ3	Zono data yanaga danata danata		_	2.0	μΛ	$V_{GE} = 0V$, $V_{CE} = 10V$, $T_{J} = 25$ °C
				5.0	mΑ	$V_{GE} = 0V, V_{CE} = 900V, T_J = 150^{\circ}C$
IGES	Gate-to-Emitter Leakage Current	_	_	±100	nΑ	V _{GE} = ±20V

Switching Characteristics @ T_J = 25°C (unless otherwise specified)


	Parameter	Min.	Тур.	Max.	Units	Conditions
Qg	Total Gate Charge (turn-on)	_	160	240		I _C = 28A
Qge	Gate - Emitter Charge (turn-on)		19	29	nC	V _{CC} = 400V See Fig. 8
Qgc	Gate - Collector Charge (turn-on)		53	80		V _{GE} = 15V
ta(on)	Turn-On Delay Time	_	29	_		
t _r	Rise Time	_	26	_	ns	T _J = 25°C
ta(off)	Turn-Off Delay Time	_	110	170	113	I _C = 28A, V _{CC} = 720V
tr	Fall Time	_	150	220		$V_{GE} = 15V, R_{G} = 5.0\Omega$
Eon	Turn-On Switching Loss	_	0.19	_		Energy losses include "tail"
Eoff	Turn-Off Switching Loss	_	1.06	_	mJ	See Fig. 10, 11, 13, 14
Ets	Total Switching Loss	_	1.25	1.7		
t _{d(on)}	Turn-On Delay Time		28	<u> </u>		T _J = 150°C,
t _r	Rise Time	_	26	_	ns	I _C = 28A, V _{CC} = 720V
ta(off)	Turn-Off Delay Time		280	_	113	$V_{GE} = 15V, R_{G} = 5.0\Omega$
tr	Fall Time	_	90			Energy losses include "tail"
Ets	Total Switching Loss	_	3.45	_	mЈ	See Fig. 13, 14
LE	Internal Emitter Inductance	_	13	<u> </u>	nН	Measured 5mm from package
Cies	Input Capacitance		3300	_		V _{GE} = 0V
Coes	Output Capacitance		200		рF	V _{CC} = 30V See Fig. 7
Cres	Reverse Transfer Capacitance		45	_		f = 1.0MHz

Notes:

- \odot Repetitive rating; V_{GE} = 20V, pulse width limited by max. junction temperature. (See fig. 13b)
- 2 $\mbox{ V_{CC} = }80\%(\mbox{V_{CES}})$, $\mbox{$V_{GE}$ = }20\mbox{V_{L} = }10\mu\mbox{H}$, $\mbox{$R_{G}$ = }5.0\Omega$, (See fig. 13a)
- Repetitive rating; pulse width limited by maximum junction temperature.
 2
- ④ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
- S Pulse width 5.0µs, single shot.


Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I_{RMS} of fundamental; for triangular wave, I=I_{PK})

1000 (V) Ty = 150 °C Ty = 25 °C VCC = 50V Sys PULSE WIDTH VGE . Gate-to-Emitter Voltage (V)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

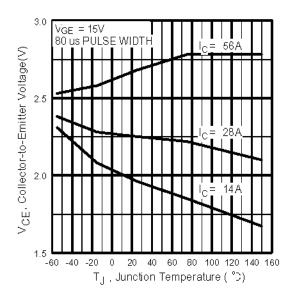


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature

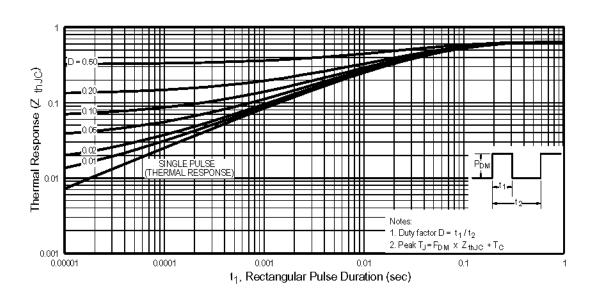
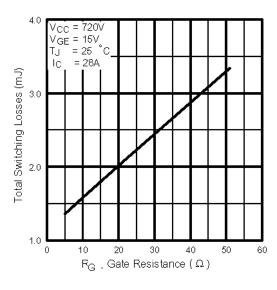


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

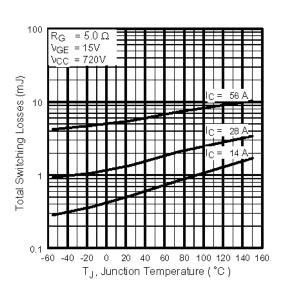
International TOR Rectifier

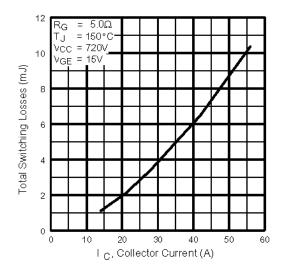

IRG4PF50WPbF

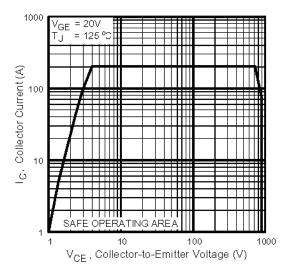
20 V_{CC} = 400V I_C = 28A 16 12 0 0 40 80 120 160 Q_G, Total Gate Charge (nC)

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage




Fig. 9 - Typical Switching Losses vs. Gate Resistance


Fig. 10 - Typical Switching Losses vs. Junction Temperature

www.irf.com

5

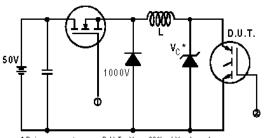

International
TOR Rectifier

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 80V power supply, pulse width and inductor will increase to obtain rated Id.

0 - 720V 96 0V 0 - 720V 96 0V 0 - 720V 48 0µF 96 0V

Fig. 13a - Clamped Inductive Load Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

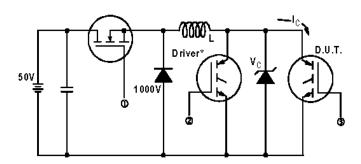
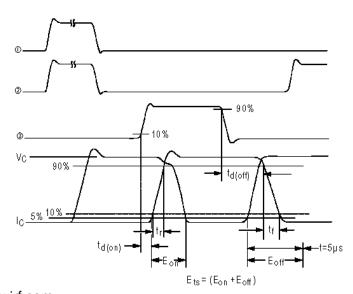
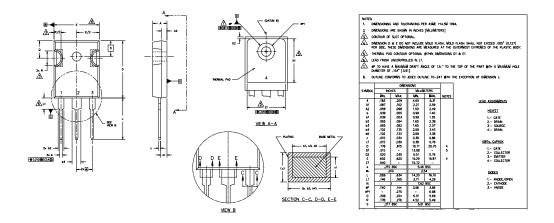


Fig. 14a - Switching Loss Test Circuit

* Driver same type as D.U.T., VC = 720V



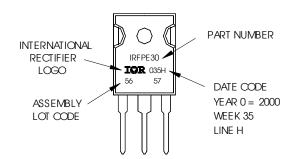

Fig. 14b - Switching Loss Waveforms

International

TOR Rectifier

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)


TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 05/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/