NPN Silicon AF Transistors

- For AF input stages and driver applications
- High current gain
- Low collector-emitter saturation voltage
- Low noise between 30 Hz and 15 kHz
- Complementary types:

BC856...-BC860...(PNP)

- Pb-free (RoHS compliant) package ${ }^{1)}$
- Qualified according AEC Q101

${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request

Type	Marking		Pin Configuration					Package
BC846A	1As	1=B	2=E	$3=C$	-	-	-	SOT23
BC846B	1Bs	1=B	2=E	$3=C$	-	-	-	SOT23
BC846BW	1Bs	1=B	2=E	$3=C$	-	-	-	SOT323
BC847A	1Es	1=B	2=E	$3=C$	-	-	-	SOT23
BC847B	1Fs	1=B	2=E	$3=C$	-	-	-	SOT23
BC847BF*	1Fs	1=B	2=E	$3=C$	-	-	-	TSFP-3
BC847BL3	1 F	1=B	2=E	$3=C$	-	-	-	TSLP-3-1
BC847BW	1Fs	1=B	2=E	$3=C$	-	-	-	SOT323
BC847C	1Gs	1=B	2=E	$3=C$	-	-	-	SOT23
BC847CW	1Gs	1=B	2=E	$3=C$	-	-	-	SOT323
BC848A	1Js	1=B	2=E	$3=C$	-	-	-	SOT23
BC848B	1Ks	1=B	2=E	$3=C$	-	-	-	SOT23
BC848BL3	1K	1=B	2=E	$3=C$	-	-	-	TSLP-3-1
BC848BW	1Ks	1=B	2=E	$3=C$	-	-	-	SOT323
BC848C	1Ls	1=B	2=E	$3=C$	-	-	-	SOT23
BC848CW	1Ls	1=B	2=E	$3=C$	-	-	-	SOT323
BC849B	2Bs	1=B	2=E	$3=C$	-	-	-	SOT23
BC849C	2Cs	1=B	2=E	$3=C$	-	-	-	SOT23
BC849CW	2Cs	1=B	2=E	$3=C$	-	-	-	SOT323
BC850B	2Fs	1=B	2=E	$3=C$	-	-	-	SOT23
BC850BW	2Fs	1=B	2=E	$3=C$	-	-	-	SOT323
BC850C	2Gs	1=B	2=E	$3=C$	-	-	-	SOT23
BC850CW	2Gs	1=B	2=E	$3=C$	-	-	-	SOT323

[^0]BC846...-BC850...

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage BC846... BC847..., BC850... BC848..., BC849...	$V_{\text {CEO }}$	$\begin{aligned} & 65 \\ & 45 \\ & 30 \end{aligned}$	V
Collector-emitter voltage BC846... BC847..., BC850... BC848..., BC849...	$V_{\text {CES }}$	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$	
Collector-base voltage BC846... BC847..., BC850... BC848..., BC849...	$V_{\text {CBO }}$	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$	
Emitter-base voltage BC846... BC847..., BC850... BC848..., BC849...	$V_{\text {EBO }}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \end{aligned}$	
Collector current	I_{C}	100	mA
Peak collector current, $t_{\mathrm{p}} \leq 10 \mathrm{~ms}$	$I_{\text {CM }}$	200	
Total power dissipation- $\begin{aligned} & T_{\mathrm{S}} \leq 71^{\circ} \mathrm{C}, \mathrm{BC} 846-\mathrm{BC} 850 \\ & T_{\mathrm{S}} \leq 128^{\circ} \mathrm{C}, \mathrm{BC} 847 \mathrm{~F} \\ & T_{\mathrm{S}} \leq 135^{\circ} \mathrm{C}, \mathrm{BC} 847 \mathrm{~L} 3-\mathrm{BC} 848 \mathrm{~L} 3 \\ & T_{\mathrm{S}} \leq 124^{\circ} \mathrm{C}, \mathrm{BC} 846 \mathrm{~W}-\mathrm{BC} 850 \mathrm{~W} \end{aligned}$	$P_{\text {tot }}$	$\begin{aligned} & 330 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-65 ... 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point1)	$R_{\text {thJS }}$		K/W
BC846-BC850		≤ 240	
BC847F		≤ 90	
BC847L3-BC848L3		≤ 60	
BC846W-BC850W		≤ 105	

[^1]BC846...-BC850...
Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $\begin{aligned} & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=0, \mathrm{BC} 846 \ldots \\ & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=0, \mathrm{BC} 847 \ldots, \mathrm{BC} 850 \ldots \\ & I_{C}=10 \mathrm{~mA}, I_{\mathrm{B}}=0, \mathrm{BC} 848 \ldots, \mathrm{BC} 449 \ldots \end{aligned}$	$V_{\text {(BR)CEO }}$	$\begin{aligned} & 65 \\ & 45 \\ & 30 \end{aligned}$			V
Collector-base breakdown voltage $\begin{aligned} & I_{\mathrm{C}}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0, \mathrm{BC} 846 \ldots \\ & I_{\mathrm{C}}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0, \mathrm{BC} 847 \ldots, \mathrm{BC} 850 \ldots \\ & I_{\mathrm{C}}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0, \mathrm{BC} 848 \ldots, \mathrm{BC} 849 \ldots \end{aligned}$	$V{ }_{(\mathrm{BR}) \mathrm{CBO}}$	$\begin{aligned} & 80 \\ & 50 \\ & 30 \end{aligned}$			
Emitter-base breakdown voltage $I_{E}=0, I_{C}=10 \mu \mathrm{~A}$	$V_{(\mathrm{BR}) \text { EbO }}$	-	6	-	
Collector-base cutoff current $\begin{aligned} & V_{\mathrm{CB}}=45 \mathrm{~V}, I_{\mathrm{E}}=0 \\ & V_{\mathrm{CB}}=30 \mathrm{~V}, I_{\mathrm{E}}=0, T_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$	${ }^{\text {CBO }}$	-	$\begin{gathered} 0.015 \\ 5 \end{gathered}$		$\mu \mathrm{A}$
DC current gain ${ }^{1)}$ $I_{\mathrm{C}}=10 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, h_{\text {FE- }}-\mathrm{grp} . \mathrm{A}$ $I_{\mathrm{C}}=10 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{B}$ $I_{\mathrm{C}}=10 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, h_{\text {FE- }}-\mathrm{grp} . \mathrm{C}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{A}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{B}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{C}$	$h_{\text {FE }}$	$\begin{aligned} & 110 \\ & 200 \\ & 420 \end{aligned}$	$\begin{aligned} & 140 \\ & 250 \\ & 480 \\ & 180 \\ & 290 \\ & 520 \end{aligned}$	220 450 800	-
Collector-emitter saturation voltage ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=0.5 \mathrm{~mA} \\ & I_{\mathrm{C}}=100 \mathrm{~mA}, I_{\mathrm{B}}=5 \mathrm{~mA} \end{aligned}$	$V_{\text {CEsat }}$	-	$\begin{gathered} 90 \\ 200 \end{gathered}$	$\begin{aligned} & 250 \\ & 600 \end{aligned}$	mV
Base emitter saturation voltage ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=0.5 \mathrm{~mA} \\ & I_{\mathrm{C}}=100 \mathrm{~mA}, I_{\mathrm{B}}=5 \mathrm{~mA} \end{aligned}$	$V_{\text {BEsat }}$	-	$\begin{aligned} & 700 \\ & 900 \end{aligned}$	-	
Base-emitter voltage ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$V_{\text {BE(ON }}$	580	660	$\begin{aligned} & 700 \\ & 770 \end{aligned}$	

[^2]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

AC Characteristics

Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=100 \mathrm{MHz}$	$f_{\text {T }}$	-	250	-	MHz
Collector-base capacitance $V_{\mathrm{CB}}=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {cb }}$	-	0.95	-	pF
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {eb }}$	-	9	-	
Short-circuit input impedance $\begin{aligned} & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{A} \\ & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{B} \\ & I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{C} \end{aligned}$	$h_{11 \mathrm{e}}$	-	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 8.7 \end{aligned}$		$\mathrm{k} \Omega$
Open-circuit reverse voltage transf. ratio $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{A}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{B}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{C}$	$h_{12 \mathrm{e}}$	-	$\begin{gathered} 1.5 \\ 2 \\ 3 \end{gathered}$		10-4
Short-circuit forward current transf. ratio $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{A}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\text {FE- }}-\mathrm{grp} . \mathrm{B}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{C}$	$h_{21 \mathrm{e}}$	-	$\begin{aligned} & 200 \\ & 330 \\ & 600 \end{aligned}$		
Open-circuit output admittance $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{A}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}-\mathrm{grp} . \mathrm{B}$ $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, h_{\mathrm{FE}}$-grp.C	$h_{22 \mathrm{e}}$	-	$\begin{aligned} & 18 \\ & 30 \\ & 60 \end{aligned}$		$\mu \mathrm{S}$
Noise figure $\begin{aligned} & I_{\mathrm{C}}=200 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, \\ & \Delta f=200 \mathrm{~Hz}, R_{\mathrm{S}}=2 \mathrm{k} \Omega, \mathrm{BC} 849 \ldots, \mathrm{BC} 850 \ldots \end{aligned}$	F	-	1.2	4	dB
Equivalent noise voltage $\begin{aligned} & I_{\mathrm{C}}=200 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, R_{\mathrm{S}}=2 \mathrm{k} \Omega, \\ & f=10 \ldots 50 \mathrm{~Hz}, \mathrm{BC} 850 \ldots \end{aligned}$	V_{n}	-	-	0.135	$\mu \mathrm{V}$

$$
\begin{aligned}
& \text { DC current gain } h_{\mathrm{FE}}=f\left(I_{\mathrm{C}}\right) \\
& V_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
$$

Base-emitter saturation voltage
$I_{\mathrm{C}}=f\left(V_{\mathrm{BEsat}}\right), h_{\mathrm{FE}}=20$

Collector-emitter saturation voltage

$I_{\mathrm{C}}=f\left(V_{\text {CEsat }}\right), h_{\text {FE }}=20$

Collector cutoff current $I_{\mathrm{CBO}}=f\left(T_{\mathrm{A}}\right)$
$V_{C B}=30 \mathrm{~V}$

Transition frequency $f_{\top}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=5 \mathrm{~V}$

Total power dissipation $P_{\text {tot }}=f\left(T_{S}\right)$ BC846-BC850

Collector-base capacitance $C_{c b}=f\left(V_{C B}\right)$ Emitter-base capacitance $C_{e b}=f\left(V_{\mathrm{EB}}\right)$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$
BC847BF

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BC847BL3/BC848BL3

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
BC846/W-BC850/W

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BC846W-BC850W

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BC847BF

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$ BC847BF

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
BC847BL3, BC848BL3

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BC847BL3, BC848BL3

Noise figure $F=f\left(V_{C E}\right)$
$I_{\mathrm{C}}=0.2 \mathrm{~mA}, R_{\mathrm{S}}=2 \mathrm{k} \Omega, f=1 \mathrm{kHz}$

Noise figure $F=f(f)$
$I_{\mathrm{C}}=0.2 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, R_{\mathrm{S}}=2 \mathrm{k} \Omega$

Noise figure $F=f\left(I_{C}\right)$
$V_{C E}=5 \mathrm{~V}, f=1 \mathrm{kHz}$

Noise figure $F=f\left(I_{C}\right)$
$V_{C E}=5 \mathrm{~V}, f=120 \mathrm{~Hz}$

Noise figure $F=f\left(I_{C}\right)$
$V_{\mathrm{CE}}=5 \mathrm{~V}, f=10 \mathrm{kHz}$

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline
Top view

1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"

\square Stencil apertures

Marking Layout (Example)

BFR193L3
Type code

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=15.000$ Pieces/Reel

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: * Not for new design

[^1]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

[^2]: ${ }^{1}$ Pulse test: $\mathrm{t}<300 \mu \mathrm{~s}$; $\mathrm{D}<2 \%$

