

NPN Silicon RF Transistor

- For highest gain low noise amplifier at 1.8 GHz
- Outstanding G_{ms} = 20 dB
 Noise Figure F = 0.9 dB
- · Gold metallization for high reliability
- SIEGET ® 45 Line

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration					Package	
BFP540F	ATs*	1=B	2=E	3=C	4=E	-	-	TSFP-4

^{*} Pin configuration fixed relative to marking (see package picture)

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
$T_A > 0$ °C		4.5	
$T_A \le 0$ °C		4	
Collector-emitter voltage	V _{CES}	14	
Collector-base voltage	V_{CBO}	14	
Emitter-base voltage	V_{EBO}	1	
Collector current	I _C	80	mA
Base current	I _B	8	
Total power dissipation ¹⁾ T _S ≤ 80°C	P _{tot}	250	mW
Junction temperature	T_{i}	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	$T_{ m stg}$	-65 150	

 $^{^{1}}T_{S}$ is measured on the collector lead at the soldering point to the pcb

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}	≤ 280	K/W

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$					
Collector-emitter cutoff current	I _{CES}	-	-	10	μA
$V_{CE} = 14 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	l _{CBO}	-	-	100	nA
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	I _{EBO}		-	10	μA
$V_{\text{EB}} = 0.5 \text{ V}, I_{\text{C}} = 0$					
DC current gain	h _{FE}	50	110	185	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3.5 V, pulse measured					

 $^{^{1}\}mbox{For calculation of}~\ensuremath{\ensuremath{\textit{R}}_{thJA}}$ please refer to Application Note Thermal Resistance

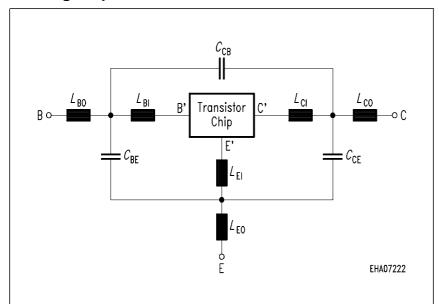
Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	2001100	Unit		
		min.	typ.	max.	
AC Characteristics (verified by random sampling	g)	1			
Transition frequency	f_{T}	21	30	-	GHz
$I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 4 \text{ V}, \ f = 1 \text{ GHz}$					
Collector-base capacitance	C_{cb}	-	0.14	0.24	pF
$V_{CB} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0,$					
emitter grounded					
Collector emitter capacitance	C_{ce}	-	0.3	-	
$V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$,					
base grounded					
Emitter-base capacitance	C_{eb}	-	0.6	-	
$V_{\text{EB}} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{\text{CB}} = 0$,					
collector grounded					
Noise figure	F				dB
$I_{C} = 5 \text{ mA}, V_{CE} = 2 \text{ V}, f = 1.8 \text{ GHz}, Z_{S} = Z_{Sopt}$		-	0.9	1.4	
$I_{C} = 5 \text{ mA}, V_{CE} = 2 \text{ V}, f = 3 \text{ GHz}, Z_{S} = Z_{Sopt}$		-	1.3	-	
Power gain, maximum available ¹⁾	G _{ma}				
$I_{C} = 20 \text{ mA}, V_{CE} = 2 \text{ V}, Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt},$					
f = 1.8 GHz		-	20	-	
f = 3 GHz		-	14.5	-	
Transducer gain	S _{21e} ²				dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 1.8 GHz		15.5	18	-	
f = 3 GHz		-	13	-	
Third order intercept point at output ²⁾	IP ₃	-	24.5	-	dBm
$V_{CE} = 2 \text{ V}, I_{C} = 20 \text{ mA}, f = 1.8 \text{ GHz},$					
$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$					
1dB Compression point at output	P _{-1dB}	-	11	-]
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 1.8 GHz					
	•		•	•	

 $^{^{1}}G_{ma} = |S_{21e} / S_{12e}| \text{ (k-(k^2-1)^{1/2})}, \ G_{ms} = |S_{21e} / S_{12e}|$

²IP3 value depends on termination of all intermodulation frequency components.

Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz


SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

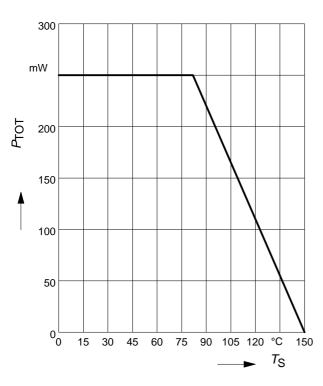
Transitor Chip Data:

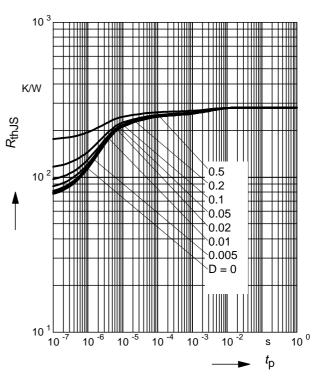
82.84	aA	BF =	107.5	-	NF =	1	-
28.383	V	IKF =	0.48731	Α	ISE =	11.15	fA
3.19	-	BR =	5.5	-	NR =	1	-
19.705	V	IKR =	0.02	Α	ISC =	19.237	aA
1.172	-	RB =	5.4	Ω	IRB =	0.72983	mΑ
1.3	Ω	RE =	0.31111	-	RC =	4	Ω
1.8063	fF	VJE =	0.8051	V	MJE =	0.46576	-
6.76	ps	XTF =	0.4219	-	VTF =	0.23794	V
1	mΑ	PTF =	0	deg	CJC =	234	fF
0.81969	V	MJC =	0.30232	-	XCJC =	0.3	-
2.324	ns	CJS =	0	fF	VJS =	0.75	V
0	-	XTB =	0	-	EG =	1.11	eV
3	-	FC =	0.73234		TNOM	300	K
	28.383 3.19 19.705 1.172 1.3 1.8063 6.76 1 0.81969 2.324 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28.383 V IKF = 3.19 - BR = 19.705 V IKR = 1.172 - RB = 1.8063 fF VJE = 6.76 ps XTF = 1 mA PTF = 0.81969 V MJC = 2.324 ns CJS = 0 - XTB = $\frac{1}{2}$	28.383 V IKF = 0.48731 3.19 - BR = 5.5 19.705 V IKR = 0.02 1.172 - RB = 5.4 1.3 Ω RE = 0.31111 1.8063 fF VJE = 0.8051 6.76 ps XTF = 0.4219 1 mA PTF = 0 0.81969 V MJC = 0.30232 2.324 ns CJS = 0 0 - XTB = 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28.383 V IKF = 0.48731 A ISE = 3.19 - BR = 5.5 - NR = 19.705 V IKR = 0.02 A ISC = 1.172 - RB = 5.4 Ω IRB = 1.3 Ω RE = 0.31111 - RC = 1.8063 fF VJE = 0.8051 V MJE = 6.76 ps XTF = 0.4219 - VTF = 1 mA PTF = 0 deg CJC = 0.81969 V MJC = 0.30232 - XCJC = 2.324 ns CJS = 0 fF VJS = 0 - EG = 0.4219 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 fF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0 - EG = 0.4219 - CJS = 0 FF VJS = 0.4219 - CJS = 0	28.383 V IKF = 0.48731 A ISE = 11.15 3.19 - BR = 5.5 - NR = 1 19.705 V IKR = 0.02 A ISC = 19.237 1.172 - RB = 5.4 Ω IRB = 0.72983 1.3 Ω RE = 0.31111 - RC = 4 1.8063 fF VJE = 0.8051 V MJE = 0.46576 6.76 ps XTF = 0.4219 - VTF = 0.23794 1 mA PTF = 0 deg CJC = 234 0.81969 V MJC = 0.30232 - XCJC = 0.3 2.324 ns CJS = 0 fF VJS = 0.75 0 - XTB = 0 - EG = 1.11

All parameters are ready to use, no scalling is necessary.

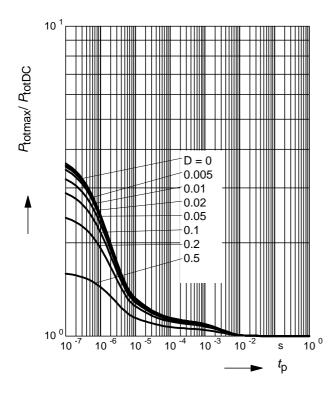
Package Equivalent Circuit:

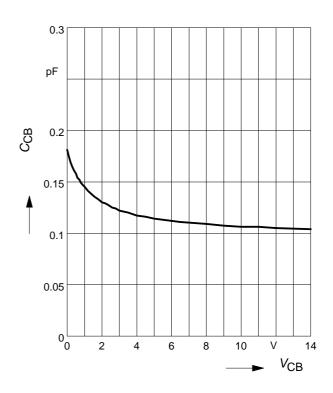
The TSFP-4 package has two emitter leads. To avoid high complexity of the package equivalent circuit, both lead are combined in on electrical connection. $R_{\rm LxI}$ are series resistors for the inductance $L_{\rm XI}$ and $K_{\rm Xa-yb}$ are the coupling coefficients between the inductance $L_{\rm Xa}$ and $L_{\rm yb}$. The referencepins for the couple ports are B, E, C, B´, E`, C´.


For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes


$L_{BI} =$	0.42	nΗ
$L_{BO} =$	0.22	nΗ
$L_{EI} =$	0.26	nΗ
$L_{EO} =$	0.28	nΗ
$L_{CI} =$	0.35	рΗ
$L_{CO} =$	0.22	nΗ
$C_{BE} =$	34	fF
$C_{BC} =$	2	fF
$C_{CE} =$	33	fF
$K_{BO-EO} =$	0.1	-
K _{BO-CO} =	0.01	-
K _{EO-CO} =	0.11	-
K _{CI-EI} =	-0.05	-
$K_{\text{BI-CI}} =$	-0.08	-
$K_{\text{EI-CI}} =$	0.2	-
$R_{LBI} =$	0.15	Ω
$R_{LEI} =$	0.11	Ω
$R_{LCI} =$	0.13	Ω
Valid up to	6GHz	

Total power dissipation $P_{tot} = f(T_S)$

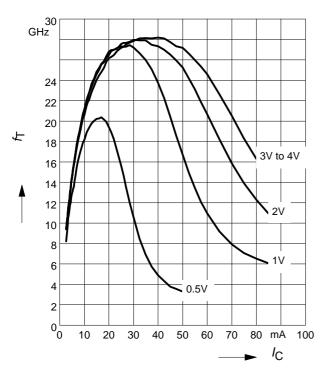

Permissible Pulse Load $R_{thJS} = f(t_p)$



Permissible Pulse Load

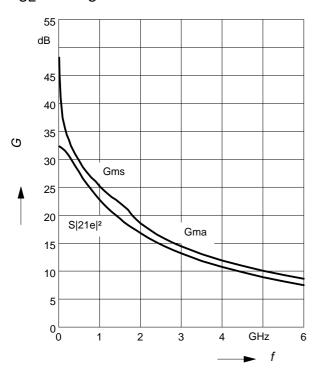
 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$

Collector-base capacitance C_{CD} = $f(V_{CB})$ f = 1MHz



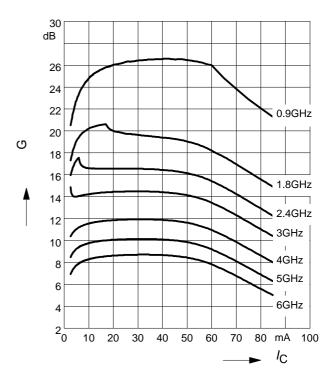
Transition frequency $f_T = f(I_C)$

f = 1 GHz


 V_{CE} = Parameter in V

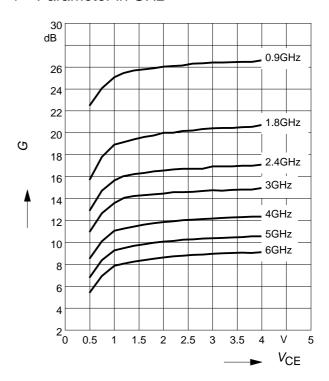
Power Gain G_{ma} , $G_{ms} = f(f)$,

$$|S_{21}|^2 = f(f)$$

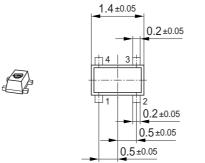

 $V_{CE} = 2V, I_{C} = 20mA$

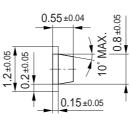
Power gain G_{ma} , $G_{ms} = f(I_C)$

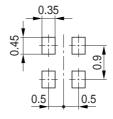
 $V_{CE} = 2V$


f = Parameter in GHz

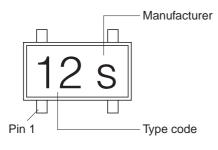
Power gain G_{ma} , $G_{ms} = f(V_{CE})$

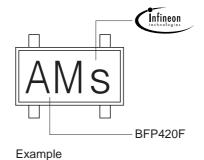

 $I_{\rm C} = 20 {\rm mA}$


f = Parameter in GHz

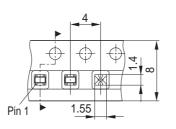


Package Outline





Foot Print


Marking Layout

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.