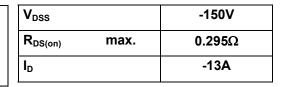


AUIRFR6215


Features

- Advanced Planar Technology
- Low On-Resistance
- P-Channel
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications of HEXFET[®] Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

G

G	D	S
Gate	Drain	Source

Bass part number	Dookogo Typo	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
	D Dek	Tube	75	AUIRFR6215
AUIRFR6215	D-Pak	Tape and Reel Left	3000	AUIRFR6215TRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -10V	-13	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V	-9.0	A
I _{DM}	Pulsed Drain Current ① 6	-44	
P _D @T _C = 25°C	Maximum Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) 26	310	mJ
I _{AR}	Avalanche Current ①6	-6.6	A
E _{AR}	Repetitive Avalanche Energy 06	11	mJ
dv/dt	Peak Diode Recovery dv/dt3	-5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case 68		1.4	
$R_{ ext{ heta}JA}$	Junction-to-Ambient (PCB Mount) 🗇		50	°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient		110	

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-150			V	V _{GS} = 0V, I _D = -250μA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.20		V/°C	Reference to 25°C, I_D = -1mA $$
R _{DS(on)}	Statia Drain to Source On Desistance			0.295		V _{GS} = -10V, I _D = -6.6A ④
	Static Drain-to-Source On-Resistance			0.58	Ω	V _{GS} = -10V, I _D = -6.6A
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Trans conductance	3.6			S	V _{DS} = -50V, I _D = -6.6A ⑥
1	Drain to Source Lookage Current			-25	μA	V _{DS} = -150 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			-250	μΑ	V _{DS} = -120V,V _{GS} = 0V,T _J =150°C
1	Gate-to-Source Forward Leakage			-100	n A	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q _g	Total Gate Charge			66		I _D = -6.6A
Q_{gs}	Gate-to-Source Charge			8.1	nC	V _{DS} = -120V
Q _{gd}	Gate-to-Drain Charge			35		V_{GS} = -10V, See Fig 6 and 13 \circledast
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = -75V
t _r	Rise Time		36			I _D = -6.6A
t _{d(off)}	Turn-Off Delay Time		53		ns	R _G = 6.8Ω
t _f	Fall Time		37			R _D = 12Ω, See Fig 10 ④
L _D	Internal Drain Inductance		4.5			Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package (s) (t) (t) (t) (t) (t) (t) (t) (t
C _{iss}	Input Capacitance		860			V _{GS} = 0V
Coss	Output Capacitance		220		pF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		130			f = 1.0MHz, See Fig. 5
Diode Cha	racteristics					
	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			-13		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-44		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.6	V	T」= 25°C,I _S = -6.6A,V _{GS} = 0V ④⑥
t _{rr}	Reverse Recovery Time		160	240	ns	T _J = 25°C ,I _F = -6.6A
Q _{rr}	Reverse Recovery Charge		1.2	1.7	μC	di/dt = 100A/µs ⊛᠖
						· · · · · · · · · · · · · · · · · · ·

 Forward Turn-On Time
 Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)

Notes:

t_{on}

 $\odot\;$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

 $@~V_{\text{DD}}$ = -25V, starting $~T_{\text{J}}$ = 25°C, L = 14mH, R_{G} = 25 $\Omega,~I_{\text{AS}}$ = -6.6A. (See Fig.12)

- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- ⑤ This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact .
- © Uses IRF6215 data and test conditions.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- $\label{eq:rescaled} \$ \ \ R_{\theta} \ \ is \ measured \ \ at \ \ T_J \ \ approximately \ 90^{\circ}C.$

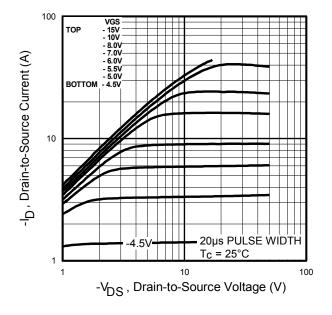


Fig. 1 Typical Output Characteristics

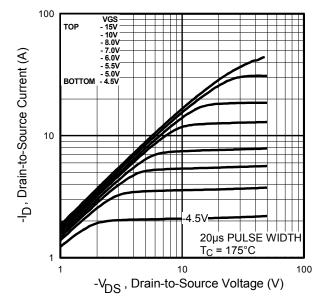


Fig. 2 Typical Output Characteristics

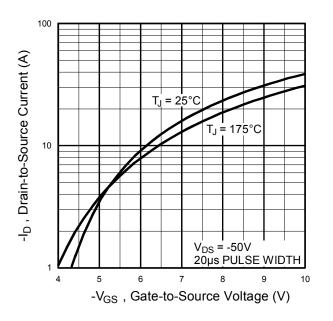


Fig. 3 Typical Transfer Characteristics

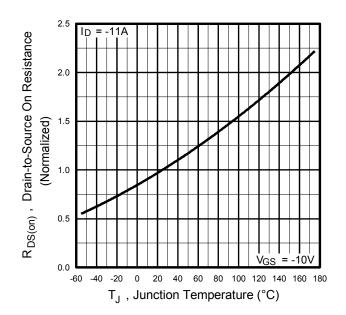
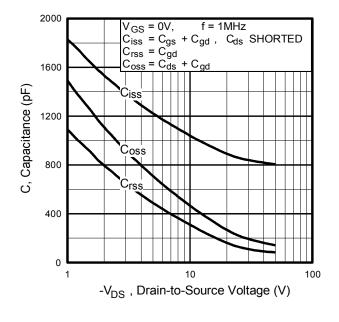
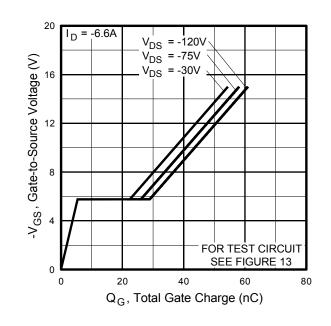


Fig. 4 Normalized On-Resistance vs. Temperature

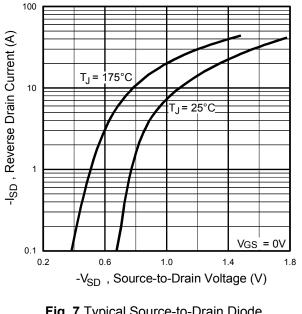


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

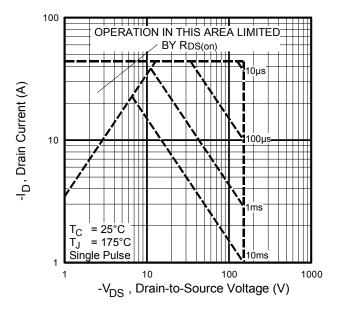


Fig 8. Maximum Safe Operating Area

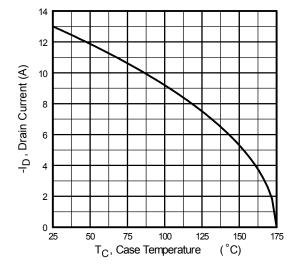


Fig 9. Maximum Drain Current vs. Case Temperature

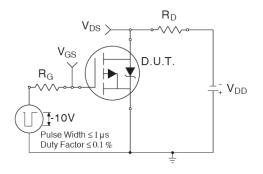


Fig 10a. Switching Time Test Circuit

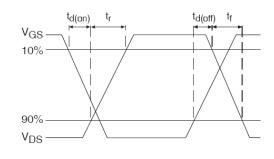


Fig 10b. Switching Time Waveforms

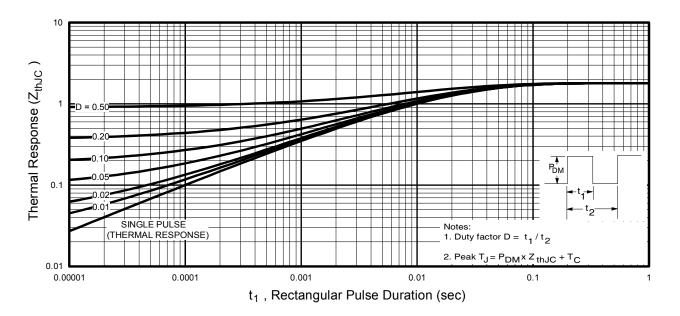


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

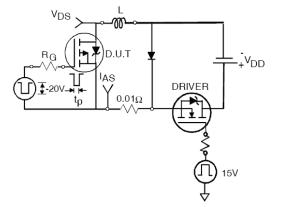
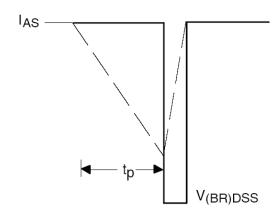
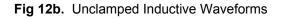
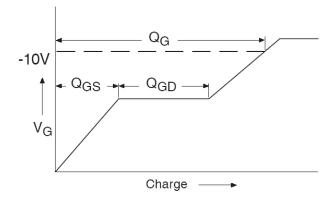





Fig 12a. Unclamped Inductive Test Circuit

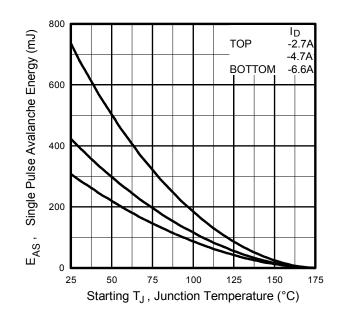


Fig 12c. Maximum Avalanche Energy vs. Drain Current

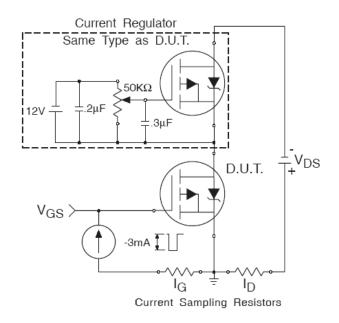
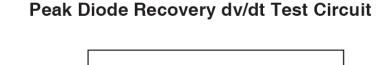
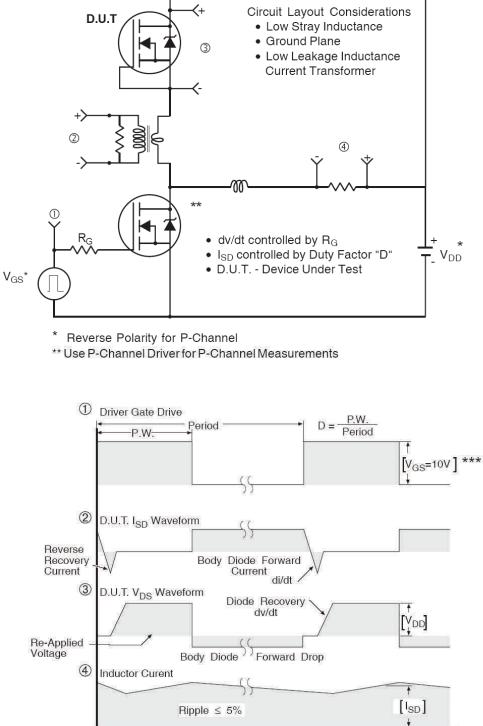



Fig 13b. Gate Charge Test Circuit



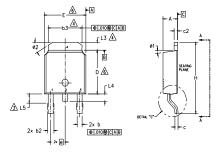
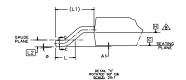
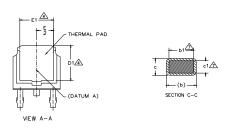


Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs




AUIRFR6215

D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].

A- LEAD DIMENSION UNCONTROLLED IN 15.

- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- $\textcircled{\mbox{\sc bound}}$ Dimension D & E do not include Mold Flash. Mold Flash shall not exceed .005 [0.13] per side. These dimensions are measured at the outmost extremes of the plastic body.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.

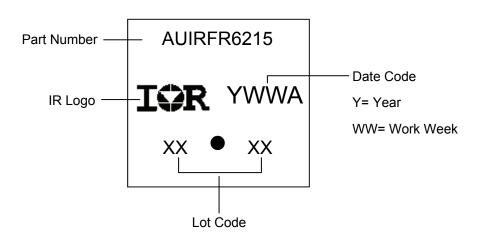
A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H. 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M		N			
B O	MILLIM	ETERS	INC	O T E S	
L	MIN.	MAX.	MIN.	MAX.	E S
Α	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
b	0.64	0.89	.025	.035	
ь1	0.65	0.79	.025	.031	7
b2	0.76	1.14	.030	.045	
b3	4.95	5.46	.195	.215	4
с	0.46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	7
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	6
D1	5.21	-	.205	-	4
Е	6.35	6.73	.250	.265	6
E1	4.32	-	.170	-	4
е	2.29	BSC	.090	BSC	
н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	
L3	0.89	1.27	.035	.050	4
L4	-	1.02	-	.040	
L5	1.14	1.52	.045	.060	3
ø	0.	10 °	0.	10*	
ø1	0.	15 °	0.	15*	
ø2	25'	35*	25*	35*	

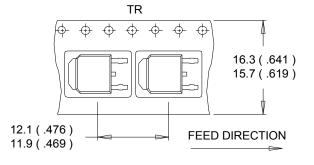
LEAD ASSIGNMENTS

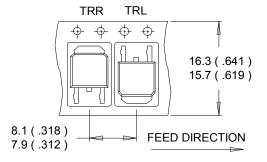
<u>HEXFET</u>

1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

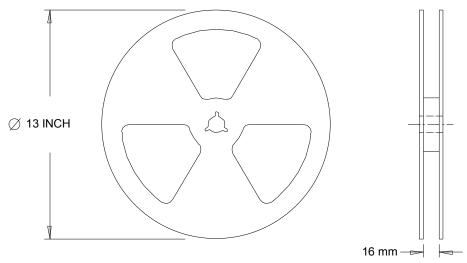

IGBT & CoPAK

1.- GATE


2.- COLLECTOR 3.- EMITTER


4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information


D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES :

1. OUTLINE CONFORMS TO EIA-481.

Qualification Information

			Automotive				
		(per AEC-Q101)					
Qualificat	tion Level		is part number(s) passed Automotive qualification. Infineon's consumer qualification level is granted by extension of the higher el.				
Moisture	Sensitivity Level	D-Pak	MSL1				
			Class M4 [†]				
	Machine Model	AEC-Q101-002					
	Human Dady Madal		Class H3A [†]				
ESD	Human Body Model	AEC-Q101-001					
	Charged Device Medel	Class C5 [†]					
	Charged Device Model	AEC-Q101-005					
RoHS Compliant			Yes				

† Highest passing voltage.

Revision History

Date	Comments
10/12/2015	 Updated datasheet with corporate template Corrected ordering table on page 1.
10/05/2017	 Corrected typo error on part marking on page 8.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.