

HEXFET[®] Power MOSFET

V _{DSS}	25	V	
$\begin{array}{c} \mathbf{R}_{DS(on)} \max\\ (@ V_{GS} = 10 V) \end{array}$	2.4	mΩ	
(@ V _{GS} = 4.5V)	3.3		
Qg _(typical)	16	nC	
I _D (@T _{C (Bottom)} = 25°C)	70©⊘	Α	

Applications

• Control MOSFET for Sync Buck Converters

Secondary Synchronous Rectifier MOSFET for isolated DC-DC converters

Features		Benefits
Low Charge (typical 16 nC)		Low Switching Losses
Low R _{DSon} (<2.4 mΩ)		Lower Conduction Losses
Low Thermal Resistance to PCB (<2.7 °C/W)		Enable better Thermal Dissipation
Low Profile (<0.9 mm)	results in	Increased Power Density
Industry-Standard Pinout	\Rightarrow	Multi-Vendor Compatibility
Compatible with Existing Surface Mount Techniques		Easier Manufacturing
RoHS Compliant, Halogen-Free		Environmentally Friendlier
MSL1, Industrial Qualification		Increased Reliability

Page part number Backage Type		Standard P	ack	Orderable Part Number
Base part number Packa	Package Type	Form	Quantity	Orderable Part Nulliber
IRFH4226PbF	PQFN 5mm x 6 mm	Tape and Reel	4000	IRFH4226TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{GS}	Gate-to-Source Voltage	± 20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	30		
$I_D \oslash T_{C(Bottom)} = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	110©⑦		
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	69	Α	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Source Bonding Technology Limited)	70©⊘		
I _{DM}	Pulsed Drain Current ①	460®		
P _D @T _A = 25°C	Power Dissipation S	3.4	14/	
P _D @T _{C(Bottom)} = 25°C Power Dissipation (5)		46	- W	
Linear Derating Factor		0.027	W/°C	
TJ	Operating Junction and-55 to + 150GStorage Temperature Range		*0	
T _{STG}			°C	

Notes ① through ⑧ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditi	ons		
BV _{DSS}	Drain-to-Source Breakdown Voltage	25	Typ.		V	$V_{GS} = 0V, I_D = 250\mu$			
ΔBV_{DSS} $\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	25	21			Reference to 25°C,			
_	Static Drain-to-Source On-Resistance		1.7	2.4	1110/ 0	$V_{GS} = 10V, I_D = 30A$			
R _{DS(on)}			2.6	3.3	mΩ	$V_{GS} = 10V, I_D = 30V$ $V_{GS} = 4.5V, I_D = 30V$			
V.	Gate Threshold Voltage	1.1	1.6	2.1	V	$V_{DS} = V_{GS}, I_D = 50\mu$			
V _{GS(th)}	Gate Threshold Voltage Coefficient	1.1	-5.7	Z.1	w mV/°C	$v_{\rm DS} - v_{\rm GS}$, $v_{\rm D} - 30\mu$	~		
$\Delta V_{GS(th)}$	Drain-to-Source Leakage Current		-5.7	1.0	μΑ	V _{DS} = 20V, V _{GS} = 0			
I _{DSS}	Gate-to-Source Forward Leakage			100	μΛ	$V_{\rm GS} = 20V, V_{\rm GS} = 0$ $V_{\rm GS} = 20V$	v		
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = 20V V _{GS} = -20V			
gfs	Forward Transconductance	136		-100	S	V _{GS} = 120V V _{DS} = 10V, I _D = 30A	\ \		
-		130	32		nC	-			
Q _g	Total Gate Charge		16	24		V _{GS} = 10V, V _{DS} = 1	$3V, I_D = 30A$		
Q _g	Total Gate Charge		3.6	1	-	1/-12/			
Q _{gs1}	Pre-Vth Gate-to-Source Charge		2.0			$V_{DS} = 13V$			
Q _{gs2}	Post-Vth Gate-to-Source Charge				nC		$V_{GS} = 4.5V$		
Q _{gd}	Gate-to-Drain Charge		5.8		-	I _D = 30A			
Q _{godr}	Gate Charge Overdrive		4.6						
Q _{sw}	Switch Charge $(Q_{gs2} + Q_{gd})$		7.8			1 - 10 - 0	<u></u>		
Q _{oss}	Output Charge		15			V _{DS} = 16V, V _{GS} = 0V			
R _G			1.1		Ω		5)/		
t _{d(on)}	Turn-On Delay Time		11		-	$V_{DD} = 13V, V_{GS} = 4$.5V		
t _r	Rise Time		35		ns	$I_D = 30A$			
t _{d(off)}	Turn-Off Delay Time		14		-	R _G =1.8Ω			
t _í	Fall Time		8.1						
C _{iss}	Input Capacitance		2000		_	$V_{GS} = 0V$			
C _{oss}	Output Capacitance		570		pF	$V_{DS} = 13V$			
C _{rss}	Reverse Transfer Capacitance		150			f = 1.0 MHz			
Avalanche Ch			1						
	Parameter		Max.			Units.			
E _{AS}	Single Pulse Avalanche Energy ②			131		mJ			
I _{AR}	Avalanche Current ①			30		A			
Diode Charac		1	1	1	1				
	Parameter	Min.	Тур.	Max.	Units	Conditi	ons		
ls	Continuous Source Current			706⑦		MOSFET symbol			
	(Body Diode)				A	showing the	_(⊣ ★)		
I _{SM}	Pulsed Source Current	rrent 46(460®		integral reverse				
	(Body Diode) ①			400@		p-n junction diode.	s		
V _{SD}	Diode Forward Voltage			1.0	V	T _J = 25°C, I _S = 30A			
t _{rr}	Reverse Recovery Time		16	24	ns	T _J = 25°C, I _F = 30A	, V _{DD} = 13V		
Q _{rr}	Reverse Recovery Charge		28	42	nC	di/dt = 450A/µs ③			
Thermal Resi	stance								
	Parameter				Тур.	Max.	Units		
R _{0JC} (Bottom)	Junction-to-Case ④					2.7			
R _{eJC} (Top)	Junction-to-Case ④					27	°C/W		
	hungstien to Anglient @					07			

Junction-to-Ambient (5)

Junction-to-Ambient

37

23

2

 $\mathsf{R}_{ ext{ heta}\mathsf{JA}}$

R_{0JA} (<10s)

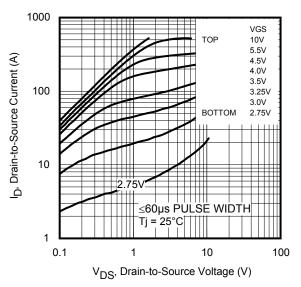
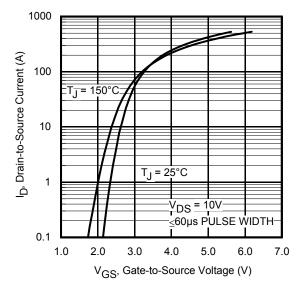



Fig 1. Typical Output Characteristics

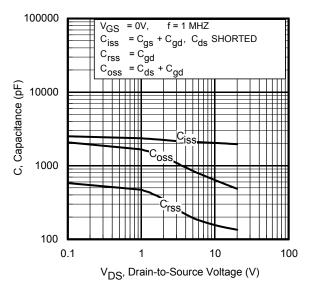


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

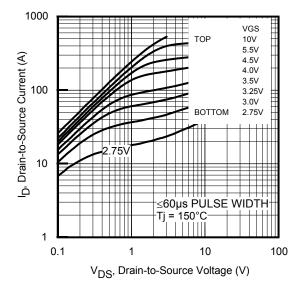


Fig 2. Typical Output Characteristics

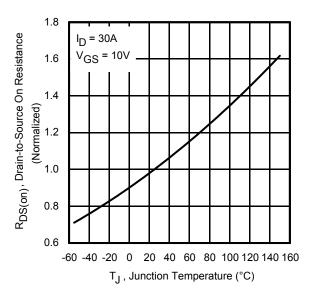


Fig 4. Normalized On-Resistance vs. Temperature

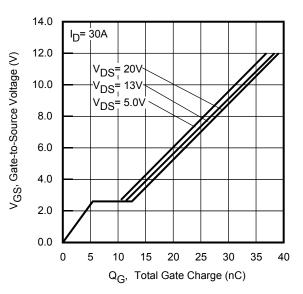
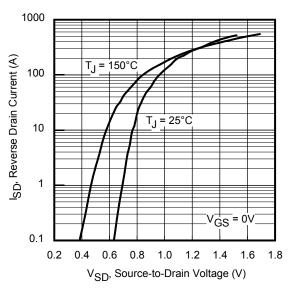
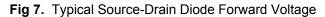




Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

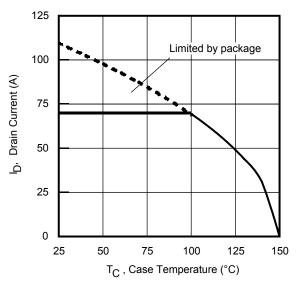


Fig 9. Maximum Drain Current vs. Case Temperature

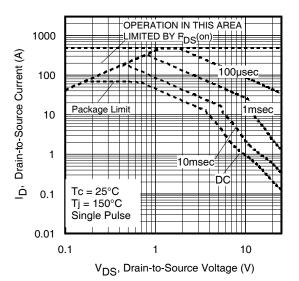


Fig 8. Maximum Safe Operating Area

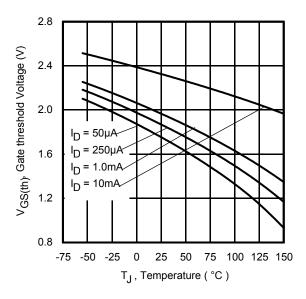
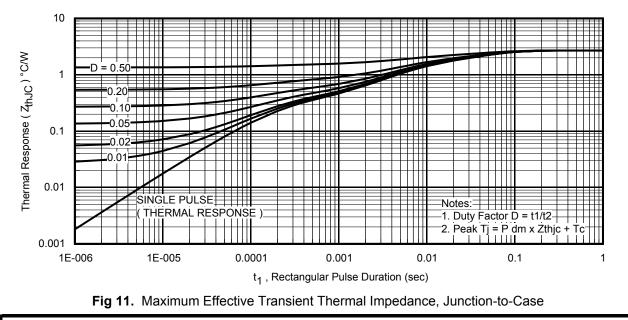



Fig 10. Threshold Voltage Vs. Temperature

Downloaded from Arrow.com.

IRFH4226PbF

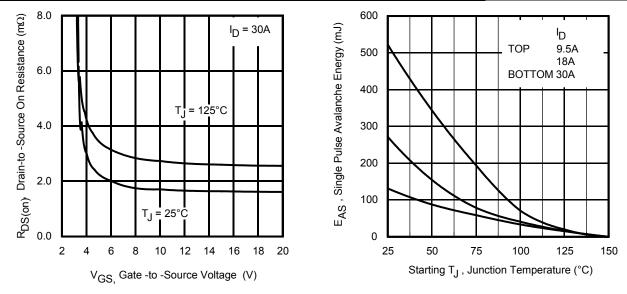


Fig 12. On– Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

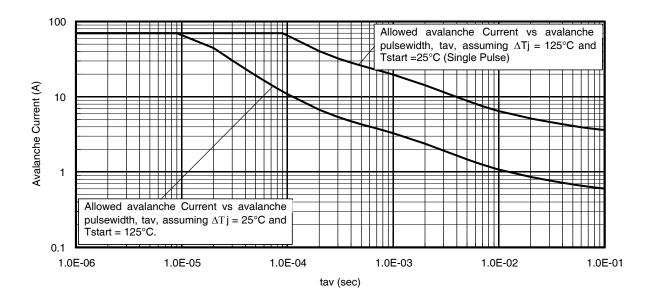
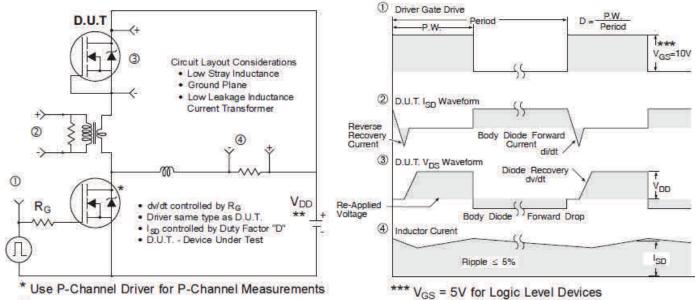



Fig 14. Single Avalanche Current vs. pulse Width

IRFH4226PbF

** Reverse Polarity for P-Channel

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

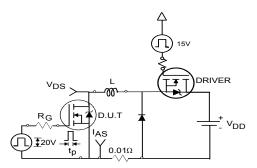


Fig 16a. Unclamped Inductive Test Circuit

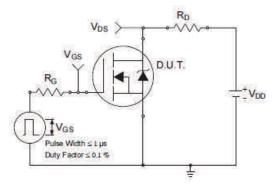


Fig 17a. Switching Time Test Circuit

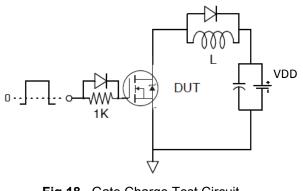
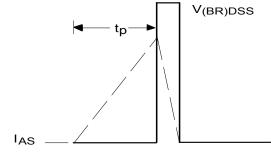
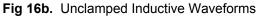




Fig 18. Gate Charge Test Circuit

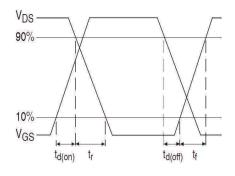
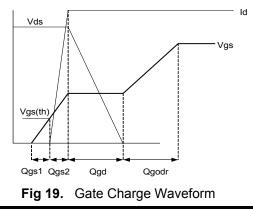
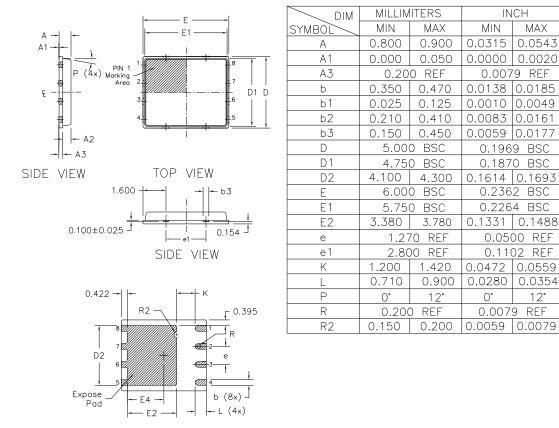




Fig 17b. Switching Time Waveforms

PQFN 5x6 Outline "B" Package Details

Note:

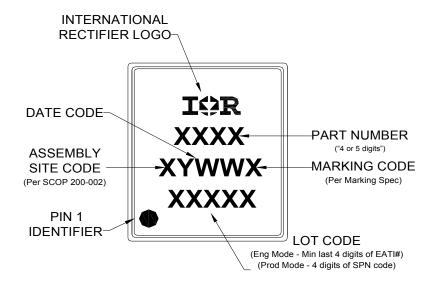
INCH

MAX

12°

Dimensions and toleranceing confirm to ASME Y14.5M-1994

 Dimension L represents terminal full back from package edge up to 0.1mm is acceptable


- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

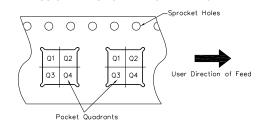
BOTTOM VIEW

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Pitch between successive cavity centers

P<u>1</u>

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

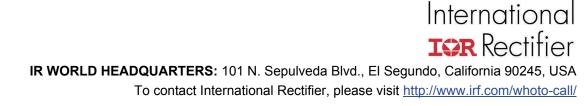
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Downloaded from Arrow.com.

Qualification Information[†]

Qualification Level		Industrial [†] (per JEDEC JESD47F ^{††} guidelines)		
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{††)}		
RoHS Compliant	Yes			

† Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability


++ Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot Starting T_J = 25°C, L = 0.29mH, R_G = 50 Ω , I_{AS} = 30A.
- ③ Pulse width \leq 400 µs; duty cycle \leq 2%.
- ④ R_{θ} is measured at T_J of approximately 90°C.
- S When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>
- © Calculated continuous current based on maximum allowable junction temperature.
- $\ensuremath{\textcircled{O}}$ Current is limited to 70A by source bonding technology.
- Pulse drain current is limited at 280A by source bonding technology.

Revision History

Revision mistory	
Date	Comments
03/11/15	 Updated package outline and tape and reel on pages 7 and 8.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.