

Application

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant

G	D	S
Gate	Drain	Source

Roos part number Rookage Tw		Standard Pa	ck	Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Nulliber
IRFI7440GPbF	TO-220 Full-Pak	Tube	50	IRFI7440GPbF

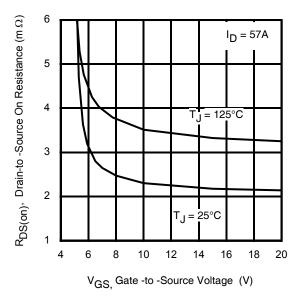


Fig 1. Typical On-Resistance vs. Gate Voltage

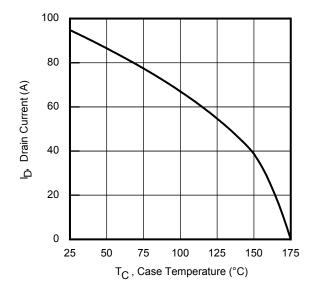


Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximium Rating

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	95	
$I_D \textcircled{O} T_C = 100^{\circ}C$ Continuous Drain Current, $V_{GS} \textcircled{O} 10V$		67	А
I _{DM}	Pulsed Drain Current ①	380	
P _D @T _C = 25°C	Maximum Power Dissipation	42	W
	Linear Derating Factor	0.28	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
TJ Operating Junction and -55 to + 175 T _{STG} Storage Temperature Range -55 to + 175		-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Avalanche Characteristics

EAS (Thermally limited)	Single Pulse Avalanche Energy ②	201	m
EAS (Thermally limited)	Single Pulse Avalanche Energy ®	407	mJ
I _{AR}	Avalanche Current ①	See Fig. 15, 16, 225, 226	А
E _{AR}	Repetitive Avalanche Energy ①	See Fig. 15, 16, 23a, 23b	mJ

Thermal Resistance

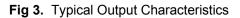
Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case ⊘		3.6	°C/M
$R_{ ext{ heta}JA}$	Junction-to-Ambient		65	°C/W

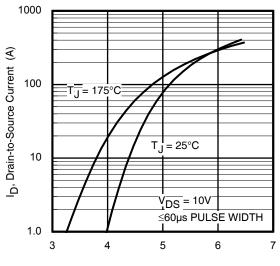
Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250 \mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		37		mV/°C	Reference to 25°C, I_D = 2mA $$
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.0	2.5	mΩ	V _{GS} = 10V, I _D = 57A
V _{GS(th)}	Gate Threshold Voltage	2.2	3.0	3.9	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
	Drein to Course Lookage Current			1.0		$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			150	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
	Gate-to-Source Forward Leakage			100	۳Å	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R _G	Gate Resistance		2.3		Ω	

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 124µH, R_G = 50 Ω , I_{AS} = 57A, V_{GS} =10V.
- $\label{eq:ISD} \textcircled{3} \quad I_{SD} \leq 57A, \ di/dt \leq 962A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- S Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- 6 C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \oslash R_{θ} is measured at T_J approximately 90°C.
- [®] Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 29A, V_{GS} = 10V.


IRFI7440GPbF


Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	144			S	V _{DS} = 10V, I _D =57A
Q _g	Total Gate Charge		88	132		I _D = 57A
Q_{gs}	Gate-to-Source Charge		22		nC	V _{DS} = 20V
Q_{gd}	Gate-to-Drain Charge		30			V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg – Qgd)		58			
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 20V
t _r	Rise Time		42			I _D = 30A
t _{d(off)}	Turn-Off Delay Time		56		ns	R _G = 2.7Ω
t _f	Fall Time		36			V _{GS} = 10V④
C _{iss}	Input Capacitance		4549			V _{GS} = 0V
C _{oss}	Output Capacitance		689			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		450		pF	f = 1.0MHz, See Fig.7
$C_{oss eff.(ER)}$	Effective Output Capacitance (Energy Related)		835			V _{GS} = 0V, V _{DS} = 0V to 32V⑥
Coss eff.(TR)	Output Capacitance (Time Related)		981			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$
	racteristics					
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			95		MOSFET symbol showing the
					Α	
I _{SM}	Pulsed Source Current (Body Diode) ①			380		integral reverse p-n junction diode.
I _{SM} V _{SD}				380 1.3		
-	(Body Diode) ①		 5.1		V	p-n junction diode.
V _{SD}	(Body Diode) ① Diode Forward Voltage		36		V	p-n junction diode. $T_J = 25^{\circ}C, I_S = 57A, V_{GS} = 0V @$ $T_J = 175^{\circ}C, I_S = 57A, V_{DS} = 40V@$ $\underline{T_J} = 25^{\circ}C$ $V_{DD} = 34V$
V _{SD} dv/dt	(Body Diode) ① Diode Forward Voltage Peak Diode Recovery dv/dt③				V V/ns	p-n junction diode. $T_J = 25^{\circ}C, I_S = 57A, V_{GS} = 0V$ $T_J = 175^{\circ}C, I_S = 57A, V_{DS} = 40V$

Dynamic Electrical Characteristics @ $T_1 = 25^{\circ}C$ (unless otherwise specified)

1000 VGS 15V 10V 8.0V тор l_D, Drain-to-Source Current (A) 7.0V 6.0V 100 5.5V 5.0V BOTTOM 4.5V 10 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 0.01 0.1 10 1 V_{DS}, Drain-to-Source Voltage (V)

V_{GS}, Gate-to-Source Voltage (V)

Fig 5. Typical Transfer Characteristics

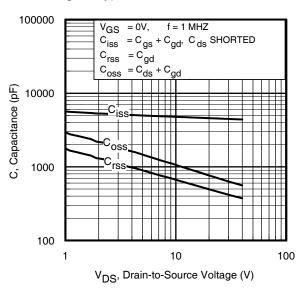
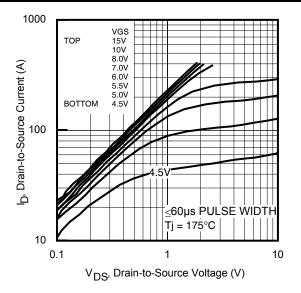




Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

IRFI7440GPbF

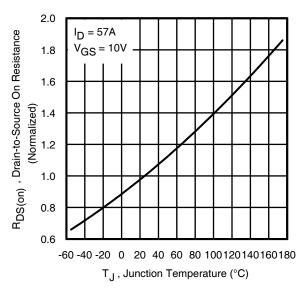
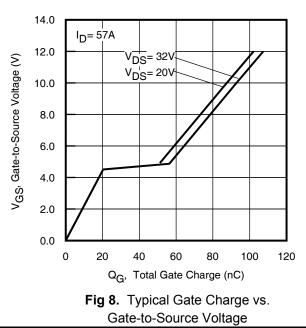



Fig 6. Normalized On-Resistance vs. Temperature

1000 I_{SD}, Reverse Drain Current (A) T_J = 175°C 100 $T_J = 25^{\circ}C$ 10 V_{GS} = 0V 1.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 V_{SD}, Source-to-Drain Voltage (V)

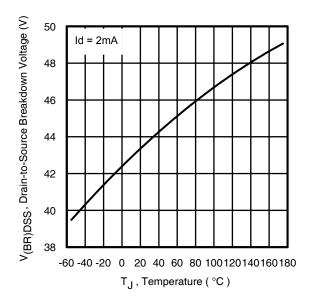


Fig 11. Drain-to-Source Breakdown Voltage

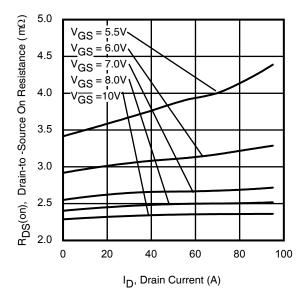


Fig 13. Typical On-Resistance vs. Drain Current

IRFI7440GPbF

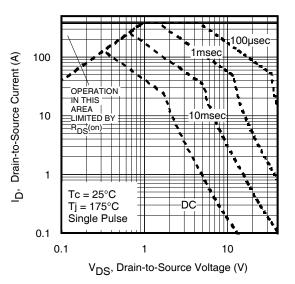


Fig 10. Maximum Safe Operating Area

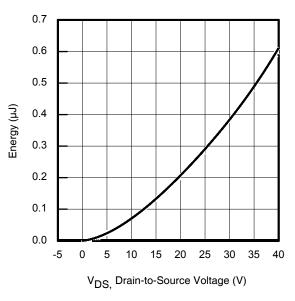
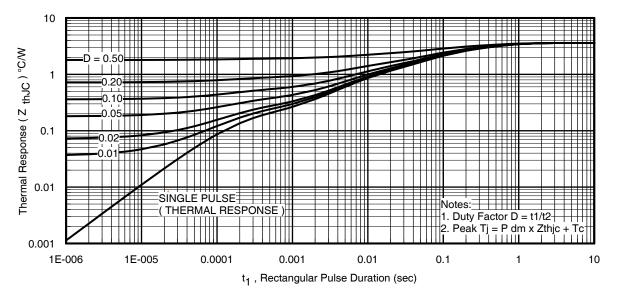
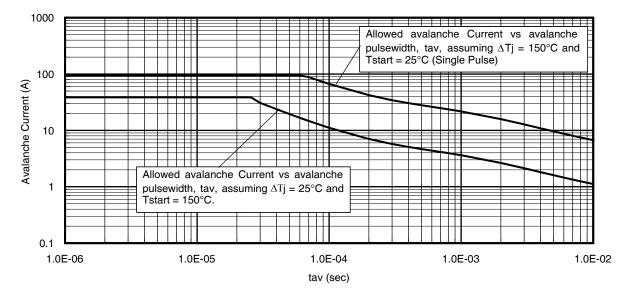




Fig 12. Typical Coss Stored Energy

IRFI7440GPbF

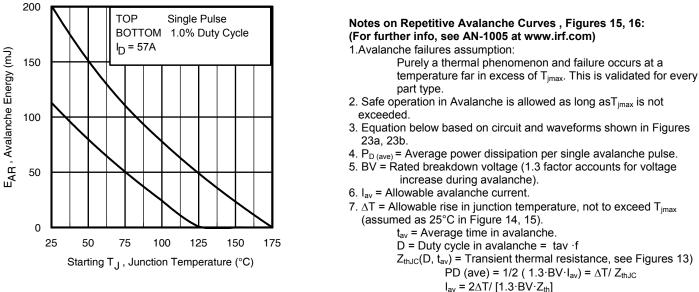


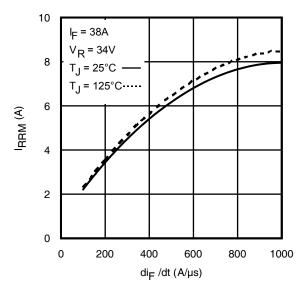
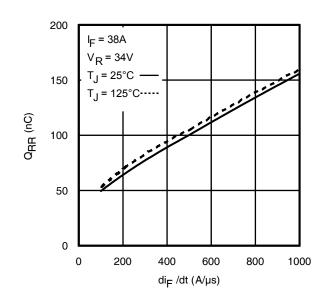
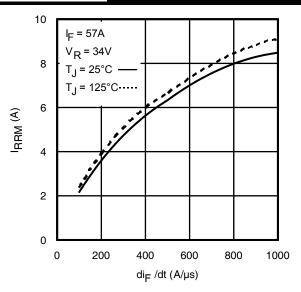
Fig 16. Maximum Avalanche Energy vs. Temperature

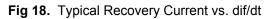
EAS (AR) = PD (ave). tav

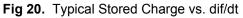
6

İnfineon

4.0 V_{GS(th)}, Gate threshold Voltage (V) 3.5 3.0 2.5 I_D = 100μA = 250µA ۱D = 1.0mA 2.0 ΙD I_D = 1.0A 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T_J , Temperature (°C)


Fig 19. Typical Recovery Current vs. dif/dt



IRFI7440GPbF

infineon

IRFI7440GPbF

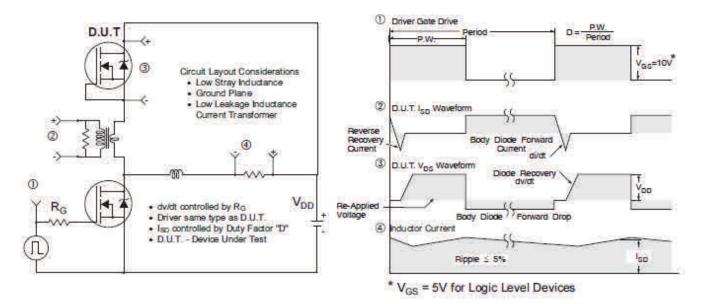


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

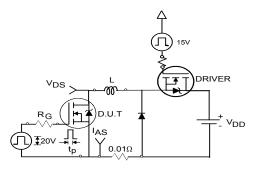


Fig 23a. Unclamped Inductive Test Circuit

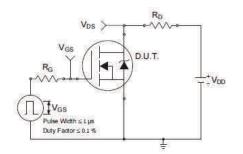


Fig 24a. Switching Time Test Circuit

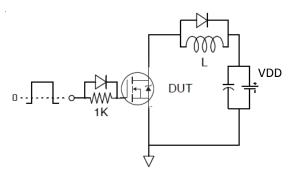


Fig 25a. Gate Charge Test Circuit

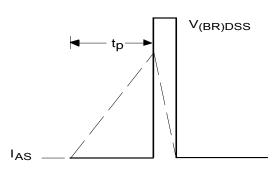


Fig 23b. Unclamped Inductive Waveforms

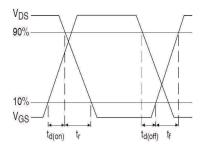


Fig 24b. Switching Time Waveforms

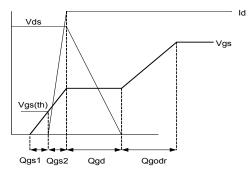
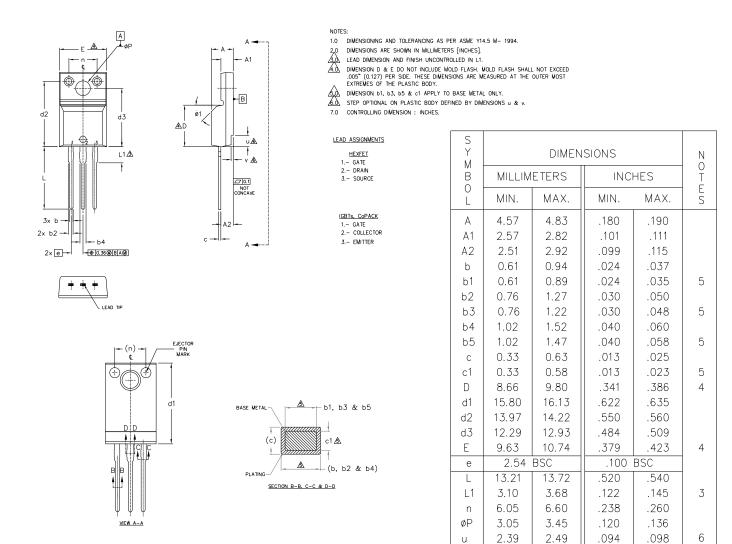
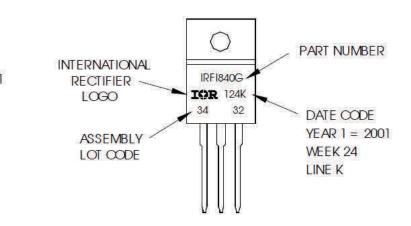



Fig 25b. Gate Charge Waveform

IRFI7440GPbF


TO-220 Full-Pak Package Outline (Dimensions are shown in millimeters (inches))

TO-220 Full-Pak Part Marking Information

EXAMPLE: THIS IS AN IRFI840G WITH ASSEMBLY LOT CODE 3432 ASSEMBLED ON WW 24, 2001 IN THE ASSEMBLY LINE "K"

Note: "P" in assembly line position indicates "Lead-Free"

0.41

V

ø1

0.51

45°

.016

TO-220AB Full-Pak packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

9

6

.020

45°

Qualification Information[†]

	Industrial				
Qualification Level	(per JEDEC JESD47F) ^{††}				
Moisture Sensitivity Level	TO-220 Full-Pak N/A				
RoHS Compliant	Yes				

+ Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/product-info/reliability/</u>

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments		
11/18/2014	 Updated E_{AS (L=1mH)} = 407mJ on page 2 Updated note 8 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 29A, V_{GS} =10V". on page 2 		
12/16/2015	 Updated datasheet with corporate template Corrected typo test condition for Switch time ID from "57A" to "30A" on page 3. 		

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

<u>WARNINGS</u>

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.