

HEXFET® Power MOSFET

V _{DSS}	25	V	
$R_{DS(on)}$ max (@ V_{GS} = 10V)	0.95	mΩ	
(@ V _{GS} = 4.5V)	1.25		
Qg (typical)	46.0	nC	
I _D (@T _{C (Bottom)} = 25°C)	100⑦	A	

Applications

- Synchronous Rectifier MOSFET for Sync Buck Converters
 Secondary Synchronous Rectifier MOSFET for isolated DC-DC converters
- Active ORing and Hot Swap
- Battery Operated DC Motor Inverters

Features

Low R_{DSon} (<0.95 m Ω)	
Low Thermal Resistance to PCB (<0.8°C/W)	
Low Profile (<0.9 mm)	results in
Industry-Standard Pinout	\Rightarrow
Compatible with Existing Surface Mount Techniques	
RoHS Compliant, Halogen-Free	
MSL1, Industrial Qualification	

Benefits

	Bollotto
	Lower Conduction Losses
	Enable better thermal dissipation
n	Increased Power Density
	Multi-Vendor Compatibility
	Easier Manufacturing
	Environmentally Friendlier
	Increased Reliability

Boss nort number	Dookogo Tymo	Standard P	ack	Orderable Part Number	
Base part number	Package Type	Form Quantity		Orderable Part Number	
IRFH4201PbF	PQFN 5mm x 6 mm	Tape and Reel	4000	IRFH4201TRPbF	

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	49	Α
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	326 ©⑦	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	206©⑦	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V (Source Bonding Technology Limited)	100⑦	
I _{DM}	Pulsed Drain Current ①	400	
P _D @T _A = 25°C	Power Dissipation ®	3.5	W
P _D @T _{C(Bottom)} = 25°C	Power Dissipation	156	
	Linear Derating Factor	0.028	W/°C
T_J	Operating Junction and	-55 to + 150	°C
T_{STG}	Storage Temperature Range		

Notes ① through ⑦ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	25			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		20		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.70	0.95		$V_{GS} = 10V, I_D = 50A$ ③
			0.97	1.25	mΩ	$V_{GS} = 4.5V, I_D = 50A \ 3$
$V_{GS(th)}$	Gate Threshold Voltage	1.1	1.6	2.1	V	$V_{DS} = V_{GS}$, $I_D = 150\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.9		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 20V, V_{GS} = 0V$
I_{GSS}	Gate-to-Source Forward Leakage			100	- A	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -20V$
gfs	Forward Transconductance	175			S	$V_{DS} = 13V, I_{D} = 50A$
Q_g	Total Gate Charge		94.0		nC	$V_{GS} = 10V, V_{DS} = 13V, I_{D} = 50A$
Q_g	Total Gate Charge		46.0	69.0		
Q_{gs1}	Pre-Vth Gate-to-Source Charge		11.0			V _{DS} = 13V
Q_{gs2}	Post-Vth Gate-to-Source Charge		6.4		nC	V _{GS} = 4.5V
Q_{gd}	Gate-to-Drain Charge		16.0			I _D = 50A
Q_godr	Gate Charge Overdrive		12.6			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		22.4			
Q_{oss}	Output Charge		46.0		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		0.9	2.7	Ω	
$t_{d(on)}$	Turn-On Delay Time		20			$V_{DD} = 13V, V_{GS} = 4.5V$
t _r	Rise Time		43		ns	I _D = 50A
$t_{d(off)}$	Turn-Off Delay Time		24			$R_G=1.8\Omega$
t _f	Fall Time		19			
C_{iss}	Input Capacitance		6100			$V_{GS} = 0V$
Coss	Output Capacitance		1700		pF	V _{DS} = 13V
C _{rss}	Reverse Transfer Capacitance		450			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.
E _{AS}	Single Pulse Avalanche Energy ②		478
I_{AR}	Avalanche Current ①		50

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			100⑦		MOSFET symbol
1	(Body Diode) Pulsed Source Current				- Δ	showing the
I _{SM}	(Body Diode) ①			400		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 50A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		31	47	ns	$T_J = 25^{\circ}C$, $I_F = 50A$, $V_{DD} = 13V$
Q_{rr}	Reverse Recovery Charge		84	126	nC	di/dt = 400A/µs ③

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (Bottom)	Junction-to-Case ④		8.0	
R _{θJC} (Top)	Junction-to-Case ④		18	°C/W
$R_{ heta JA}$	Junction-to-Ambient ©		36	
R _{θJA} (<10s)	Junction-to-Ambient ©		22	

2 2017-01-24

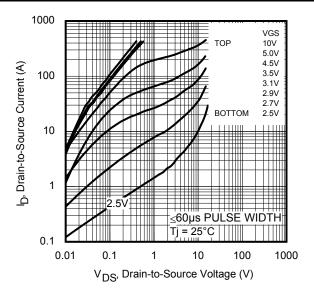


Fig 1. Typical Output Characteristics

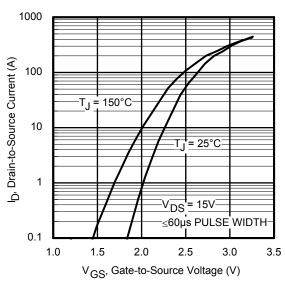


Fig 3. Typical Transfer Characteristics

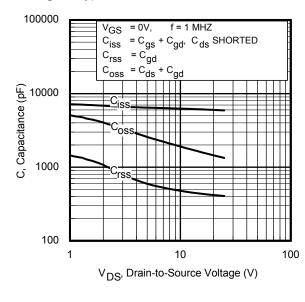


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

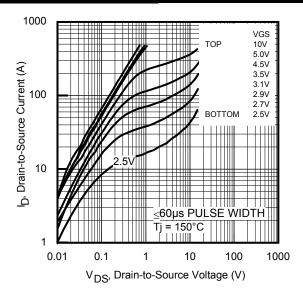


Fig 2. Typical Output Characteristics

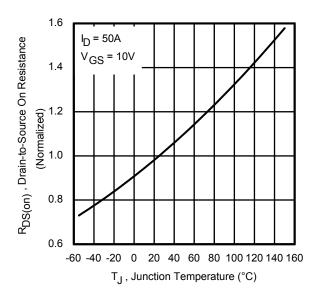


Fig 4. Normalized On-Resistance vs. Temperature

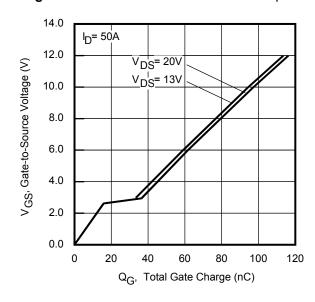


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

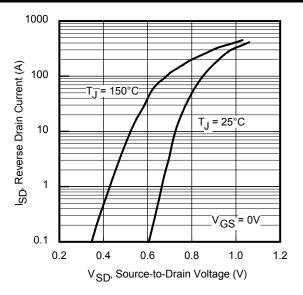


Fig 7. Typical Source-Drain Diode Forward Voltage

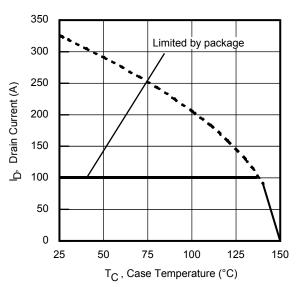


Fig 9. Maximum Drain Current vs. Case Temperature

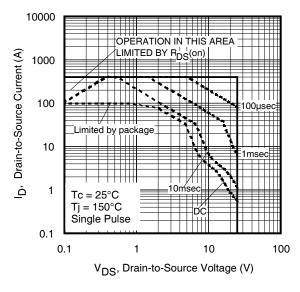


Fig 8. Maximum Safe Operating Area

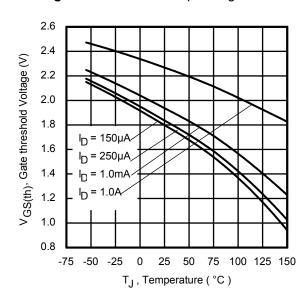


Fig 10. Drain-to-Source Breakdown Voltage

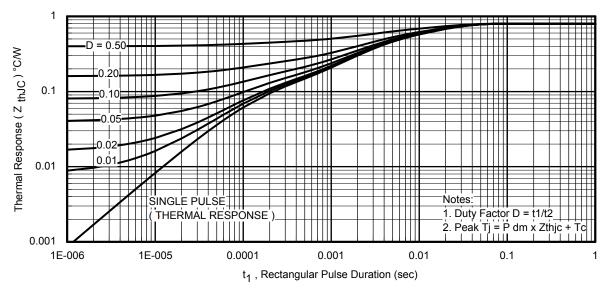
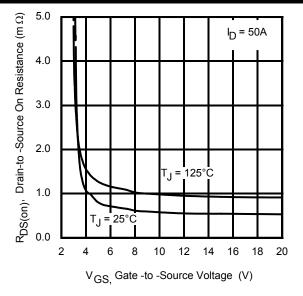



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

4

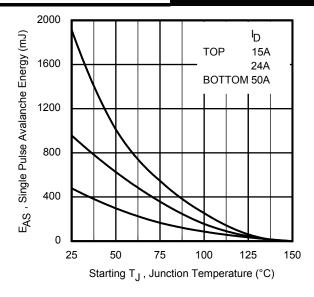


Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

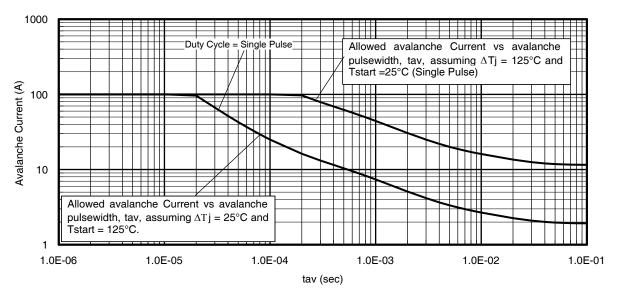


Fig 14. Typical Avalanche Current vs. Pulsewidth

5 2017-01-24

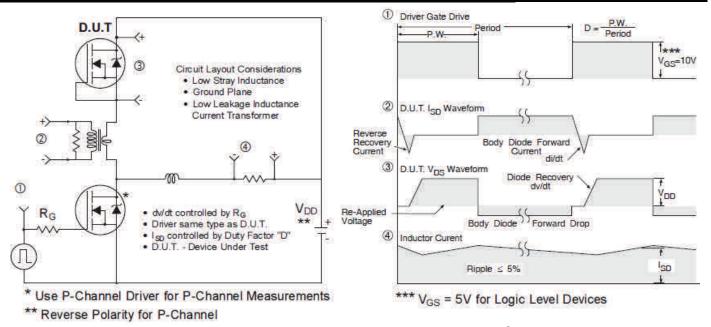


Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

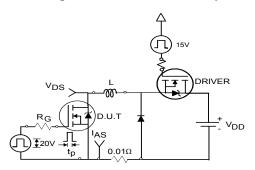


Fig 16a. Unclamped Inductive Test Circuit

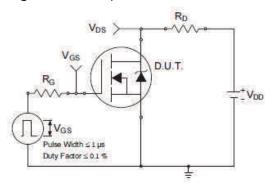


Fig 17a. Switching Time Test Circuit

Fig 18. Gate Charge Test Circuit

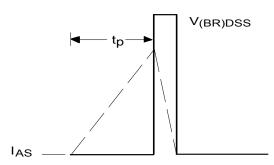


Fig 16b. Unclamped Inductive Waveforms

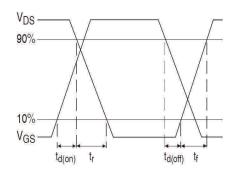


Fig 17b. Switching Time Waveforms

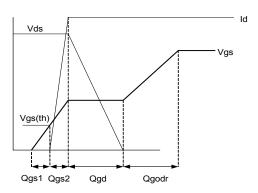
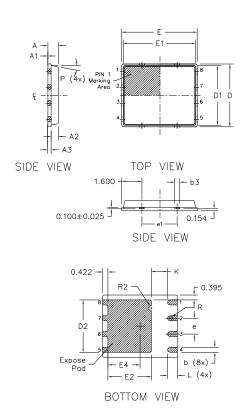
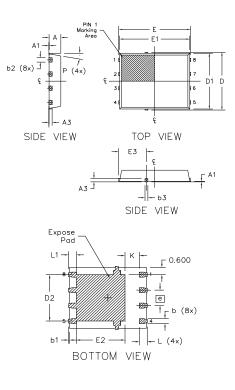



Fig 19. Gate Charge Waveform

PQFN 5x6 Outline "B" Package Details



DIM	MILLIM	IITERS	IN	ICH	
SYMBOL	MIN	MAX	MIN	MAX	
Α	0.800	0.900	0.0315	0.0543	
A1	0.000	0.050	0.0000	0.0020	
А3	0.20	0 REF	0.007	9 REF	
b	0.350	0.470	0.0138	0.0185	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.150	0.450	0.0059	0.0177	
D	5.000 BSC		0.1969 BSC		
D1	4.75	O BSC	0.1870 BSC		
D2	4.100	4.300	0.1614	0.1693	
E	6.00	O BSC	0.2362 BSC		
E1	5.75	O BSC	0.2264 BSC		
E2	3.380	3.780	0.1331	0.1488	
е	1.27	0 REF	0.0500 REF		
e1	2.80	0 REF	0.11	02 REF	
K	1.200	1.420	0.0472	0.0559	
L	0.710	0.900	0.0280	0.0354	
Р	0,	12°	0°	12°	
R	0.200	REF	0.007	9 REF	
R2	0.150	0.200	0.0059	0.0079	

Note:

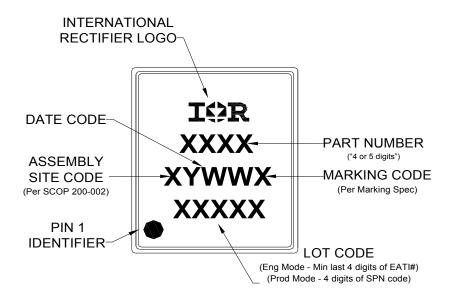
- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Sluas well as the terminal
- 4. Radius on terminal is Optional

PQFN 5x6 Outline "G" Package Details

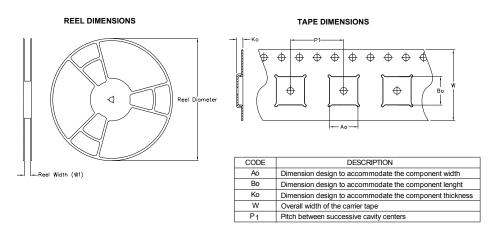
DIM	MILLIMETERS		11	INCH			
SYMBOL	MIN.	MAX.	MIN.	MAX.			
Α	0.950	1.050	0.0374	0.0413			
A1	0.000	0.050	0.0000	0.0020			
А3	0.254	REF	0.0100	REF			
Ь	0.310	0.510	0.0122	0.0201			
b1	0.025	0.125	0.0010	0.0049			
b2	0.210	0.410	0.0083	0.0161			
b3	0.180	0.450	0.0071	0.0177			
D	5.150	BSC	0.2028 BSC				
D1	5.000	BSC	0.1969 BSC				
D2	3.700	3.900	0.1457	0.1535			
E	6.150	BSC	0.2421 BSC				
E1	6.000	BSC	0.2362	BSC			
E2	3.560	3.760	0.1402	0.1488			
E3	2.270	2.470	0.0894	0.0972			
е	1.27	REF	0.050	REF			
K	0.830	1.400	0.0327	0.0551			
L	0.510	0.710	0.0201	0.0280			
L1	0.510	0.710	0.0201	0.0280			
Р	10 deg	12 deg	0 deg	12 deg			

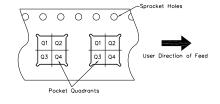
Note:

- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional


For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.infineon.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.infineon.com/technical-info/appnotes/an-1154.pdf


Note: For the most current drawing please refer to IR website at http://www.infineon.com/package/


PQFN 5x6 Part Marking

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.infineon.com/package/

8 2017-01-24

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F ^{††} guidelines)	
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{††)}
RoHS Compliant	Yes	

[†] Qualification standards can be found at International Rectifier's web site: http://www.infineon.com/product-info/reliability † Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.38mH, $R_G = 50\Omega$, $I_{AS} = 50$ A.
- 3 Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- 4 R_{θ} is measured at T_J of approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.infineon.com/technical-info/appnotes/an-994.pdf
- © Calculated continuous current based on maximum allowable junction temperature.
- ② Current is limited to 100A by source bonding technology.

Revision History

Date	Comments
	Updated package 3D drawing, on page 1.
05/17/2013	Added Continuous Drain Current limited by source bonding technology, on page 1.
	Divided note 6 into note 6 & 7, on page 8.
01/15/2013	Release of final data sheet.
03/16/2015	Updated package outline and tape and reel on pages 7 and 8.
	Changed datasheet with Infineon logo - all pages
01/24/2017	Added package outline for "option G" on page 7.
	Added disclaimer on last page

2017-01-24

Trademarks of Infineon Technologies AG

HUNIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSciC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?
Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

2017-01-24