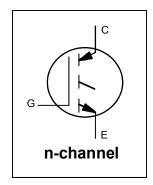


Ε

Emitter

Applications


INSULATED GATE BIPOLAR TRANSISTOR

$$V_{CES} = 1200V$$

$$I_{C(Nominal)} = 75A$$

$$T_{J(max)} = 175^{\circ}C$$

$$V_{CE(on)} typ = 1.7V @ I_C = 75A$$

Industrial Motor Drives UPS HEV Inverter G C Gate Collector

▶ Benefits Low V_{CE(on)} Trench IGBT Technology High Efficiency in a Wide Range of Applications Low Switching Losses Suitable for a Wide Range of Switching Frequencies Very Soft Turn-off Characteristics Reduced EMI and Overvoltage in Motor Drive Applications 10μs Short Circuit SOA

Low Switching Losses	Suitable for a Wide Range of Switching Frequencies			
Very Soft Turn-off Characteristics	Reduced EMI and Overvoltage in Motor Drive Applications			
10μs Short Circuit SOA	Dunned Transient Desferences for learning and Deliability			
Square RBSOA	Rugged Transient Performance for Increased Reliability			
Tight Parameter Distribution	Encelled Owner Observe in Benefit Oceanting			
Positive V _{CE(on)} Temperature Coefficient	Excellent Current Sharing in Parallel Operation			
Integrated Gate Resistor	Easier Paralleling with Integrated Gate Resistor			
$T_{j(max)} = 175$ °C	Increased Reliability			

Page part number	Dookogo Typo	Standa	rd Pack	Ordereble next number	
Base part number Package Type		Form	Quantity	Orderable part number	
IRG8CH76K10F	Die on Film	Wafer	1	IRG8CH76K10F	

Mechanical Parameter

Die Size	9.4 x 8.1 mm ²			
Minimum Street Width	95	μm		
Emitter Pad Size	See Die Drawing			
Gate Pad Size	1.0 x 1.6	mm ²		
Area Total / Active	76.0 / 50.0			
Thickness	140	μm		
Wafer Size	200	mm		
Notch Position	0	Degrees		
Maximum-Possible Chips per Wafer	342 pcs.			
Passivation Front side	Silicon Nitride, Polyimide			
Front Metal	Al, Si (5.6μm)			
Backside Metal	AI, Ti, Ni, Ag			
Die Bond	Electrically conductive epoxy or solder			
Reject Ink Dot Size	0.25 mm diameter minimum			

Maximum Ratings

	Parameter	Max.	Units
V_{CE}	Collector-Emitter Voltage, T _J =25°C	1200	V
Ic	DC Collector Current	①	Α
I _{LM}	Clamped Inductive Load Current ②	225	Α
$V_{\sf GE}$	Gate Emitter Voltage	± 30	V
T _J , T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

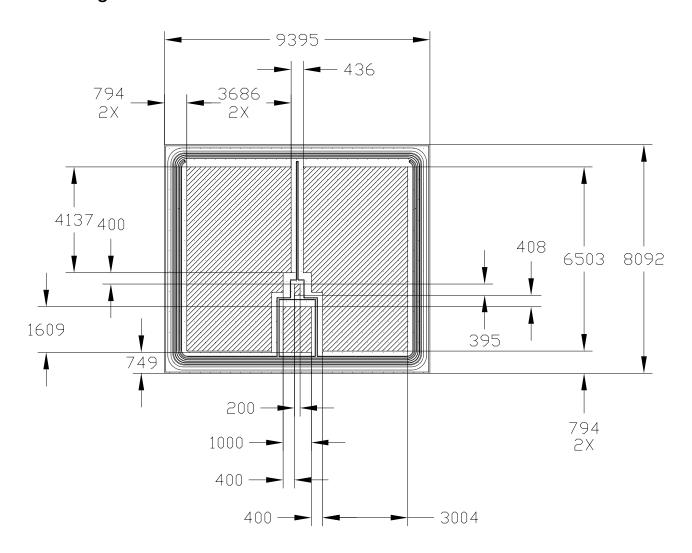
Static Characteristics (Tested on wafers) @ T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200				V _{GE} = 0V, I _C = 250μA ③
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage			2.0	V	$V_{GE} = 15V, I_{C} = 75A, T_{J} = 25^{\circ}C$ (4)
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	5.0		6.5		$I_C = 3.0 \text{mA}$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 600	nA	$V_{CE} = 0V$, $V_{GE} = \pm 30V$
R _{G INTERNAL}	Internal Gate Resistance	1.6	2.0	2.4	Ω	

Electrical Characteristics (Not subject to production test- Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		1.7		V	V _{GE} = 15V, I _C = 75A , T _J = 25°C ⑤
			2.1		V	V _{GE} = 15V, I _C = 75A , T _J = 175°CS
SCSOA	Short Circuit Safe Operating Area	10			μs	$V_{GE} = 15V, V_{CC} = 600V$
						V _P ≤ 1200V,T _J =150°C
RBSOA	Reverse Bias Safe Operating Area					$T_J = 175^{\circ}C, I_C = 225A$
		FULL SQUARE			V _{CC} = 960V, Vp ≤ 1200V	
						V_{GE} = +20V to 0V
C _{iss}	Input Capacitance		7150			V _{GE} = 0V
C_{oss}	Output Capacitance		310		pF	V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		230			f = 1.0MHz
Q_g	Total Gate Charge (turn-on)		480	_		I _C = 75A ⑤
Q_{ge}	Gate-to-Emitter Charge (turn-on)	_	30	_	nC	V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge (turn-on)	_	310	_	1	V _{CC} = 600V

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)


	Parameter	Min.	Тур.	Max.	Units	Conditions ©
$t_{d(on)}$	Turn-On delay time	_	80	_		$I_{\rm C}$ = 75A, $V_{\rm CC}$ = 600V
t _r	Rise time	_	15	_		$R_G = 1.5\Omega$, $V_{GE}=15V$
$t_{d(off)}$	Turn-Off delay time	_	210	_		$T_J = 25^{\circ}C$
t _f	Fall time	_	130	_	no	
$t_{d(on)}$	Turn-On delay time	_	80	_	ns	$I_{\rm C}$ = 75A, $V_{\rm CC}$ = 600V
t _r	Rise time	_	20	_		$R_G = 1.5\Omega$, $V_{GE}=15V$
$t_{d(off)}$	Turn-Off delay time	_	270	_		T _J = 150°C
t _f	Fall time	_	285	_		

Notes:

- ① The current in the application is limited by T_{JMax} and the thermal properties of the assembly.
- ② $V_{CC} = 80\% (V_{CES}), V_{GE} = 20V.$
- Actual test limits take into account additional losses in the measurement setup.
- ⑤ Pulse width \leq 400µs; duty cycle \leq 2%.
- 6 Values influenced by parasitic L and C in measurement.

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MICRO-METER
- 2. CONTROLLING DIMENSION: MICRO-METER
- 3. DIE WIDTH AND LENGTH TOLERANCE: -50µm
- 4. DIE THICKNESS = 140 MICRO-METER

www.irf.com

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the
 assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office.

Revision History

Date	Comments
09/26/2014	 Updated Front Metal from "Al, Si(4um)" to "Al, Si (5.6um)" on page 1. Updated Die drawing and removed reference part number from Die drawing on page 3.
06/03/2015	Updated IFX logo on page 1 & 4.

AN INFINEON TECHNOLOGIES COMPANY

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/

www.irf.com