600 V three-phase gate driver IC with OCP, Enable, and Fault

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, $\mathrm{dV} / \mathrm{dt}$ immune
- Gate drive supply range from 10 V to 20 V (IR2136/

IR21368), 11.5 V to 20 V (IR21362D), or 12 V to 20 V (IR21363/IR21365/IR21366/IR21367)

- Undervoltage lockout for all channels
- Over-current shutdown turns off all six drivers
- Independent 3 half-bridge drivers
- Matched propagation delay for all channels
- Cross-conduction prevention logic
- Low side output out of phase with inputs. High side outputs

Packages
 out of phase (IR213(6,63, 65, 66, 67, 68)), or in phase (IR21362) with inputs

- 3.3 V logic compatible
- Lower di/dt gate drive for better noise immunity
- Externally programmable delay for automatic fault clear
- All parts are LEAD-FREE

Description

The IR2136x (J\&S) are high voltage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3 V logic. A current trip function which terminates all six outputs

Feature Comparison: IR213(6,62,63,65,66,67,68) can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 V .

Part	IR2136	IR21362	IR21363	IR21365	IR21366	IR21367	IR21368
Input Logic	$\overline{\mathrm{HIN}, \overline{\mathrm{LIN}}}$	HIN, $\overline{\mathrm{LIN}}$	$\overline{\mathrm{HIN}, \overline{\mathrm{LIN}}}$	$\overline{\mathrm{HIN}}, \overline{\mathrm{LIN}}$	$\overline{\mathrm{HIN}}, \overline{\mathrm{LIN}}$	$\overline{\mathrm{HIN}}, \overline{\mathrm{LIN}}$	$\overline{\mathrm{HIN}}, \overline{\mathrm{LIN}}$
Ton (typ.)	400 ns	400 ns	400 ns	400 ns	250 ns	250 ns	400 ns
Toff (typ.)	380 ns	380 ns	380 ns	380 ns	180 ns	180 ns	380 ns
$\mathrm{~V}_{\text {IH }}$ (typ.)	2.7 V	2.7 V	2.7 V	2.7 V	2.0 V	2.0 V	2.0 V
$\mathrm{~V}_{\text {IL }}$ typ.)	1.7 V	1.7 V	1.7 V	1.7 V	1.3 V	1.3 V	1.3 V
Vitrip+	0.46 V	0.46 V	0.46 V	4.3 V	0.46 V	4.3 V	4.3 V
UVCC/BS+	8.9 V	10.4 V	11.2 V	11.2 V	11.2 V	11.2 V	8.9 V
UVCC/BS-	8.2 V	9.4 V	11.0 V	11.0 V	11.0 V	11.0 V	8.2 V

International
I \because R Rectifier
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min	Max	Units
V_{S}	High side offset voltage		$V_{\text {B } 1,2,3}-25$	$\mathrm{V}_{\mathrm{B} 1,2,3}+0.3$	V
V_{B}	High side floating supply voltage		-0.3	625	
V_{HO}	High side floating output voltage		$\mathrm{V}_{\text {S1,2,3}}-0.3$	$\mathrm{V}_{\mathrm{B} 1,2,3}+0.3$	
$V_{\text {cc }}$	Low side and logic fixed supply voltage		-0.3	25	
$\mathrm{V}_{\text {Ss }}$	Logic ground		Vcc - 25	$\mathrm{V}_{\mathrm{cc}}+0.3$	
$\mathrm{V}_{\text {LO1, } 2,3}$	Low side output voltage		-0.3	$\mathrm{V}_{\mathrm{CC}}+0.3$	
VIN	Input voltage LIN, HIN, ITRIP, EN		$\mathrm{V}_{\text {ss }}-0.3$	Lower of ($\mathrm{V}_{\mathrm{ss}}+15$) or $\left.V_{C C}+0.3\right)$	
$\mathrm{V}_{\text {RCIN }}$	RCIN input voltage		$V_{\text {Ss }}-0.3$	$\mathrm{V}_{\mathrm{cc}}+0.3$	
$\mathrm{V}_{\text {FLT }}$	$\overline{\text { FAULT }}$ output voltage		$\mathrm{V}_{\text {SS }}-0.3$	$\mathrm{V}_{\mathrm{CC}}+0.3$	
dV/dt	Allowable offset voltage slew rate		-	50	V / ns
PD	Package power dissipation @ $\mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}$	(28 lead PDIP)	-	1.5	W
		(28 lead SOIC)	-	1.6	
		(44 lead PLCC)	-	2.0	
$\mathrm{Rth}_{\text {JA }}$	Thermal resistance, junction to ambient	(28 lead PDIP)	-	83	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		(28 lead SOIC)	-	78	
		(44 lead PLCC)	-	63	
TJ	Junction temperature		-	150	${ }^{\circ} \mathrm{C}$
Ts	Storage temperature		-55	150	
T_{L}	Lead temperature (soldering, 10 seconds)		-	300	

Recommended Operating Conditions

The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The V_{S} offset ratings are tested with all supplies biased at a 15 V differential.

Symbol	Definition		Min	Max	Units
$V_{B 1,2,3}$	High side floating supply voltage	IR213(6,68)	$\mathrm{V}_{\mathrm{S} 1,2,3}+10$	$\mathrm{V}_{51,2,3}+20$	V
		IR21362	$\mathrm{V}_{\mathrm{S} 1,2,3}+11.5$	$\mathrm{V}_{\mathrm{s} 1,2,3}+20$	
		IR213(6,63,65,66,67)	$\mathrm{V}_{\mathrm{S} 1,2,3}+12$	$\mathrm{V}_{\mathrm{S} 1,2,3}+20$	
$\mathrm{V}_{\text {S 1, 2,3 }}$	High side floating supply offset voltage		Note 1	600	
$\mathrm{V}_{\text {HO }} 1,2,3$	High side output voltage		$\mathrm{V}_{\mathrm{S} 1,2,3}$	$\mathrm{V}_{\mathrm{B} 1,2,3}$	
$\mathrm{V}_{\text {LO1, } 2,3}$	Low side output voltage		0	V_{cc}	
V_{cc}	Low side and logic fixed supply voltage	IR213(6,68)	10	20	
		IR21362	11.5	20	
		IR213(6,63,65,66,67)	12	20	
$V_{s s}$	Logic ground		-5	5	
$\mathrm{V}_{\text {FLT }}$	FAULT output voltage		V_{SS}	V_{cc}	
$\mathrm{V}_{\mathrm{RCIN}}$	RCIN input voltage		$V_{\text {SS }}$	V_{cc}	

Note 1: Logic operational for V_{S} of $(\mathrm{COM}-5 \mathrm{~V})$ to $(\mathrm{COM}+600 \mathrm{~V})$. Logic state held for V_{S} of $(\mathrm{COM}-5 \mathrm{~V})$ to $\left(\mathrm{COM}-\mathrm{V}_{\mathrm{BS}}\right)$. (Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins and the ITRIP and EN pins are internally clamped with a 5.2 V zener diode.

International
IgR Rectifier

Recommended Operating Conditions - (Continued)

The input/output logic-timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The V_{S} offset ratings are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min	Max	Units
$\mathrm{V}_{\text {ITRIP }}$	ITRIP input voltage	V_{SS}	$\mathrm{V}_{\mathrm{SS}}+5$	
$\mathrm{~V}_{\text {IN }}$	Logic input voltage LIN, HIN (IR213(6,63,65,66,67,68)), HIN (IR21362), EN	V_{SS}	$\mathrm{V}_{\mathrm{SS}}+5$	V
$\mathrm{~T}_{\mathrm{A}}$	Ambient temperature	-40	125	${ }^{\circ} \mathrm{C}$

Note 2: All input pins and the ITRIP and EN pins are internally clamped with a 5.2 V zener diode.

Static Electrical Characteristics

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS} 1,2,3}\right)=15 \mathrm{~V}$ unless otherwise specified. The $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{TH}}$, and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (HIN1,2,3 and LIN1,2,3). The V_{0} and I_{0} parameters are referenced to COM and $\mathrm{V}_{\mathrm{S} 1,2,3}$ and are applicable to the respective output leads: $\mathrm{HO} 1,2,3$ and LO1,2,3.

Symbol	Definition		Min	Typ	Max	Units	Test Conditions
$\mathrm{V}_{\text {IH }}$	Logic "0" input voltage $\overline{\text { LIN1,2,3 }}, \overline{\text { HIN } 1,2,3}$ IR213(6,63,65) Logic "1" input voltage HIN1,2,3 IR21362		3.0	-	-	V	
	Logic " 0 " input voltage $\overline{\text { LIN1,2,3, }} \overline{\text { HIN1,2,3 }}$ IR213(66,67,68)		2.5	-	-		
VIL	Logic "1" input Voltage $\overline{\text { LIN1,2,3, }} \overline{\text { HIN1,2,3 }}$ IR213(6,63,65) Logic "0" input voltage HIN1,2,3 IR21362		-	-	0.8		
	Logic " 0 " input voltage $\overline{\text { LIN1,2,3, }} \overline{\text { HIN1,2,3 }}$ IR213(66,67,68)						
$\mathrm{V}_{\mathrm{EN}, \mathrm{TH}+}$	Enable positive going threshold		-	-	3		
$\mathrm{V}_{\text {EN,TH- }}$	Enable negative going threshold		0.8	-	-		
$\mathrm{V}_{\text {IT, TH }}$ +	ITRIP positive going threshold	IR2136(2)(3)(6)	0.37	0.46	0.55		
		IR21365(7)(8)	3.85	4.30	4.75		
$\mathrm{V}_{\text {IT, HYS }}$	ITRIP input hysteresis	IR2136(2)(3)(6)	-	0.07	-		
		IR21365(7)(8)	-	. 15	-		
$\mathrm{V}_{\text {RCIN, }}$ TH+	RCIN positive going threshold		-	8	-		
$\mathrm{V}_{\text {RCIN, } \mathrm{HYS}}$	RCIN input hysteresis		-	3	-		
V_{OH}	High level output voltage, $\mathrm{V}_{\text {BIAS }}-\mathrm{V}_{\mathrm{O}}$		-	0.9	1.4		$\mathrm{lo}=20 \mathrm{~mA}$
VoL	Low level output voltage, V_{0}		-	0.4	0.6		
$\mathrm{V}_{\text {CCUV }+}$ $V_{\text {BSUV }}+$	$V_{C C}$ and $V_{B S}$ supply undervoltage positive going threshold	IR2136(8)	8.0	8.9	9.8		
		IR21362	9.6	10.4	11.2		
		IR21363(5)(6)(7)	10.6	11.1	11.6		

International
Igr Rectifier

Static Electrical Characteristics - (Continued)

$\mathrm{V}_{\mathrm{BIAS}}\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{BS} 1,2,3}\right)=15 \mathrm{~V}$ unless otherwise specified. The $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{TH}}$, and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (HIN1,2,3 and LIN1,2,3). The V_{O} and lo parameters are referenced to COM and $\mathrm{V}_{\mathrm{S} 1,2,3}$ and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.

International
IgR Rectifier
Dynamic Electrical Characteristics
$V_{C C}=V_{B S}=V_{B I A S}=15 \mathrm{~V}, \mathrm{~V}_{S 1,2,3}=\mathrm{V}_{\mathrm{SS}}=\mathrm{COM}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{CL}=1000 \mathrm{pF}$ unless otherwise specified.

Symbol	Definition		Min	Typ	Max	Units	Test Conditions
$\mathrm{t}_{\text {on }}$	Turn-on propagation delay	IR2136(2,3,5,8)	300	425	550	ns	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ \& 5 V
		IR2136(6,7)	-	250	-		
$\mathrm{t}_{\text {off }}$	Turn-off propagation delay	IR2136(2,3,5,8)	250	400	550		
		IR2136(6,7)	-	180	-		
tr_{r}	Turn-on rise time		-	125	190		
t_{f}	Turn-off fall time		-	50	75		
$t_{\text {EN }}$	ENABLE low to output shutdown propagation delay	IR2136(2,3,5,8)	300	450	600		$\begin{aligned} & \mathrm{V}_{\mathrm{IN},} \mathrm{~V}_{\text {EN }}=0 \mathrm{~V} \\ & \text { or } 5 \mathrm{~V} \end{aligned}$
		IR2136(6,7)	100	250	400		
$\mathrm{t}_{\text {ITRIP }}$	ITRIP to output shutdown propagation delay		500	750	1000		$\mathrm{V}_{\text {ITRIP }}=5 \mathrm{~V}$
$t_{b l}$	ITRIP blanking time		100	150	-		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V
$t_{\text {FLT }}$	ITRIP to FAULT propagation delay		400	600	800		$\mathrm{V}_{\text {ITRIP }}=5 \mathrm{~V}$
$\mathrm{t}_{\text {FILIN }}$	Input filter time (HIN, LIN) (IR213(6,62,63,65,68) only)		100	200	-		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ \& 5 V
$\mathrm{t}_{\text {FLTCLR }}$	FAULT clear time RCIN: $\mathrm{R}=2 \mathrm{M} \Omega, \mathrm{C}=1 \mathrm{nF}$		1.3	1.65	2	ms	$\begin{gathered} \mathrm{V}_{\text {IN }}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \\ \mathrm{~V}_{\text {ITRIP }}=0 \mathrm{~V} \end{gathered}$
DT	Deadtime		220	290	360	ns	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ \& 5 V
MT	Matching delay ON and OFF		-	40	75		External dead
MDT	Matching delay, max ($\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\text {off }}$) $\min \left(\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\text {off }}\right)$, ($\mathrm{t}_{\text {on }}, \mathrm{t}_{\text {off }}$ are applicable to all 3 channels)		-	25	70		time >400 ns
PM	Output pulse width matching (pwin-pwout) (Fig.2)		-	40	75		

Note: For high side PWM, HIN pulse width must be $\geq 1 \mu \mathrm{~s}$.

VCC	VBS	ITRIP	ENABLE	FAULT	LO1,2,3	HO1,2,3
$<$ UVCC	X	X	X	0 (note 1)	0	0
15 V	$<$ UVBS	0 V	5 V	high imp	LIN1,2,3	0
15 V	15 V	0 V	5 V	high imp	LIN1,2,3	HIN1,2,3
15 V	15 V	$>\mathrm{V}_{\text {ITRIP }}$	5 V	$0($ note 2$)$	0	0
15 V	15 V	0 V	0 V	high imp	0	0

Note 1: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.
Note 2: UVCC is not latched, when $V_{c c}>\mathrm{V}_{\mathrm{cc}}$, FAULT returns to high impedance.
Note 3: When ITRIP < VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than $8 \mathrm{~V}\left(@ V_{C C}=15 \mathrm{~V}\right)$.

Functional Block Diagram

Functional Block Diagram

Functional Block Diagram

International
I $\because R$ Rectifier

Lead Definitions

Symbol	Description
$\mathrm{V}_{\text {cc }}$	Low side and logic fixed supply
$\mathrm{V}_{\text {ss }}$	Logic ground
$\begin{aligned} & \hline \text { HIN1,2,3 } \\ & \text { HIN1,2,3 } \\ & \hline \end{aligned}$	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase [IR213(6,63,65,66,67,68)] Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)
LIN1,2,3	Logic input for low side gate driver outputs (LO1,2,3), out of phase
FAULT	Indicates over-current (ITRIP) or low-side undervoltage lockout has occurred. Negative logic, opendrain output
EN	Logic input to enable I/O functionality. I/O logic functions when ENABLE is high (i.e., positive logic) No effect on FAULT and not latched
ITRIP	Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time $\mathrm{T}_{\text {FLTCLR }}$, then automatically becomes inactive (open-drain high impedance).
RCIN	External RC network input used to define FAULT CLEAR delay, $T_{\text {FLTCLR, }}$, approximately equal to $\mathrm{R}^{*} \mathrm{C}$. When RCIN $>8 \mathrm{~V}$, the FAULT pin goes back into open-drain high-impedance
COM	Low side gate drivers return
$\mathrm{V}_{\mathrm{B} 1,2,3}$	High side floating supply
HO1,2,3	High side gate driver outputs
$\mathrm{V}_{\text {S1, 2, }}$	High voltage floating supply return
LO1,2,3	Low side gate driver outputs

Note: All input pins and the ITRIP pin are internally clamped with a 5.2 V zener diode.

Lead Assignments

Fig. 1. Input/Output Timing Diagram

Fig. 2. Switching Time Waveforms

Fig. 3. Output Enable Timing Waveform

Fig. 4. Internal Deadtime Timing Waveforms

Fig. 5. ITRIP/RCIN Timing Waveforms

Fig. 6. Input Filter Function

Figure 6A. Turn-on Propagation Delay vs. Temperature

Figure 6C. Turn-on Propagation Delay vs. Input Voltage

Figure 6B. Turn-on Propagation Delay vs. Supply Voltage

Figure 7A. Turn-off Propagation Delay vs. Temperature

Figure 7B. Turn-off Propagation Delay vs. Supply Voltage

Figure 8A. Turn-on Rise Time vs. Temperature

Figure 7C. Turn-off Propagation Delay vs. Input Voltage

Figure 8B. Turn-on Rise Time vs. Supply Voltage

Figure 9A. Turn-off Fall Time vs. Temperature

Figure 9B. Turn-off Fall Time vs. Supply Voltage

Figure 10A. EN to Output Shutdown Time vs. Temperature

Figure 10B. EN to Output Shutdown Time vs. Supply Voltage

Figure 10C. EN to Output Shutdown Time vs. EN Voltage

Figure 11B. ITRIP to Output Shutdown Time vs. Supply Voltage

Figure 11A. TRIP to Output Shutdown Time vs. Temperature

Figure 12A. ITRIP to FAULT Indication Time vs. Temperature

Figure 12B. ITRIP to FAULT Indication Time vs. Supply Voltage

Fig13A. FAULT Clear Time vs. Temperature

Figure 14A. Dead Time vs. Temperature

Figure 14B. Dead Time Time vs. Supply Voltage

Figure 15B. Logic "0" Input Threshold vs.
Supply Voltage

Figure 15A. Logic " 0 " Input Threshold vs. Temperature

Figure 16A. Logic "1" Input Threshold vs. Temperature

Figure 16B. Logic "1" Input Threshold vs. Supply Voltage

Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage (IR2136/21362/21363/IR21366 Only)

Figure 17A. ITRIP Positive Going Threshold vs. Temperature (IR2136/21362/21363/IR21366 Only)

Figure 17C. ITRIP Positive Going Threshold vs. Temperature (IR21365/IR21367/IR21368 Only)

Figure 17D. ITRIP Positive Going Threshold vs. Supply Voltage (IR21365/IR21367/IR21368 Only)

Figure 18B. High Level Output vs. Supply Voltage

Figure 18A. High Level Output vs. Temperature

Figure 19A. Low Level Output vs. Temperature

Figure 19B. Low Level Output vs. Supply Voltage

Figure 21. V_{CC} or V_{BS} Undervoltage (-) vs. Temperature (IR2136/IR21368 Only)

Figure 20. V_{cc} or V_{es} Undervoltage (+) vs. Temperature (IR2136/IR21368 Only)

Figure 22. V_{cc} or V_{Ba} Undervoltage (+) vs. Temperature (IR21362 Only)

Figure 23. V_{Cc} or V_{Bg} Undervoltage (-) vs. Temperature (IR21362 Only)

Figure 25. V_{cc} or $\mathrm{V}_{\mathrm{B} s}$ Undervoltage (-) vs.
Temperature (IR21363/21365/IR21366/IR21367 Only)

Figure 24. V_{cc} or V_{B} Undervoltage (+) vs. Temperature (IR21363/21365/IR21366/IR21367 Only)

Figure 26A. Offset Supply Leakage Current vs. Temperature

Figure 26B. Offset Supply Leakage Current vs. V_{B} Boost Voltage

Figure 27B. V_{B} Supply Current vs.
V_{Es} Floating Supply Voltage

Figure 27A. V_{e} Supply Current vs. Temperature

Figure 28A. V_{cc} Supply Current vs. Temperature

Figure 28B. V_{cc} Supply Current vs. V_{cc} Supply Voltage

Figure 29B. Logic "1" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)

Figure 29A. Logic "1" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)

Figure 29C. Logic "1" Input Current vs. Temperature (IR21362 High Side Only)

Figure 29D. Logic "1" Input Current vs. Supply Voltage (IR21362 High Side Only)

Figure 30B. Logic "0" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)

Figure 30A. Logic " 0 " Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)

Figure 30C. Logic " 0 " Input Current vs. Temperature (IR21362 High Side Only)

Figure 30D. Logic " 0 " Input Current vs. Supply Voltage (IR21362 High Side Only)

Figure 31B. "High" ITRIP Current vs. Supply Voltage

Figure 31A. "High" ITRIP Current vs. Temperature

Figure 32A. "Low" ITRIP Current vs. Temperature

Figure 32B. "Low" ITRIP Current vs. Supply Voltage

Figure 33A. "High" IEN Current vs. Temperature

Figure 34A. "Low" IEN Current vs. Temperature

Figure 34B. "Low" IEN Current vs. Supply Voltage

Figure 34B. "Low" IEN Current vs. Supply Voltage

Figure 35B. RCIN Input Bias Current vs. Supply Voltage

Figure 35A. RCIN Input Bias Current vs. Temperature

Figure 36A. Output Source Current vs.
Temperature

Figure 36B. Output Source Current vs. Supply Voltage

Figure 37B. Output Sink Current vs. Supply Voltage

Figure 37A. Output Sink Current vs. Temperature

Figure 38A. RCIN Low On-resistance vs. Temperature

Figure 38B. RCIN Low On-resistance vs.
Supply Voltage

Figure 39B. FAULT Low On-resistance vs. Supply Voltage

Figure 39A. FAULT Low On-resistance vs. Temperature

Figure 40. Maximum $\mathrm{V}_{\mathbf{3}}$ Negative Offset vs. V_{B} Supply Voltage

Figure 41. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC20W), Rgate $=33 \Omega$, Vcc=15V

Figure 43.IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC40W), Rgate $=10 \Omega$, $\mathrm{Vcc}=15 \mathrm{~V}$

Figure 42. IR2136/IR21362(3)(5)(6)(7)(8)
vs. Frequency (IRG4BC30W), Rgate $=15 \Omega, \mathrm{Vcc}=15 \mathrm{~V}$

Figure 44. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4PC 50W), Rgate $=5 \Omega$, Vcc=15V

Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC20W), Rgate $=33 \Omega$, $\mathrm{Vcc}=15 \mathrm{~V}$

Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC40W), Rgate $=10 \Omega$, $\mathrm{Vcc}=15 \mathrm{~V}$

Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC30W), Rgate $=15 \Omega$ Vcc=15V

Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4PC50W), Rgate $=5 \Omega, \mathrm{Vcc}=15 \mathrm{~V}$

Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC20W), Rgate $=33 \Omega$, $\mathrm{Vcc}=15 \mathrm{~V}$

Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC40W), Rgate $=10 \Omega$, $\mathrm{Vcc}=15 \mathrm{~V}$

Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC30W), Rgate $=15 \Omega$, Vcc=15V

Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4PC50W), Rgate $=5 \Omega$ Vcc=15V

Case Outlines

| $\phi \mid 0.25[.010]$ (11) $\|C\| B(S) \mid A(S)$ |
| :---: | :---: | :---: | :---: |

NOTES:

1. DIMENSIONING \& TOLERANCING PER ANSI Y14.5M-1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-013AE.

(5) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
(6) DIMENSION DOES NOT INCLUDE MOLD PROTUSIONS. MOLD PROTUSIONS SHALL NOT EXCEED 0.15 [.006].

Case Outlines

LEAD-FREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part

28-Lead PDIP IR2136(3,5,6,7,8)
28-Lead SOIC IR2136(3,5,6,7,8)S
44-Lead PLCC IR2136(3,5,6,7,8)J
28-Lead PDIP IR21362
28-Lead SOIC IR21362S
44-Lead PLCC IR21362J

Lead-Free Part
28-Lead PDIP IR2136(3,5,6,7,8)
28-Lead SOIC IR2136(3,5,6,7,8)S
44-Lead PLCC IR2136(3,5,6,7,8)J
28-Lead PDIP IR21362
28-Lead SOIC IR21362S
44-Lead PLCC IR21362J

Order IR2136(3,5,6,7,8)
Order IR2136(3,5,6,7,8)S
Order IR2136(3,5,6,7,8)J
Order IR21362
Order IR21362S
Order IR21362J

Order IR2136(3,5,6,7,8)PbF
Order IR2136(3,5,6,7,8)(S)PbF Order IR2136(3,5,6,7,8)(J)PbF Order IR21362PbF
Order IR21362SPbF
Order IR21362JPbF

