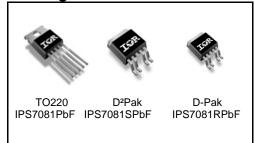


IPS7081(R)(S)PbF

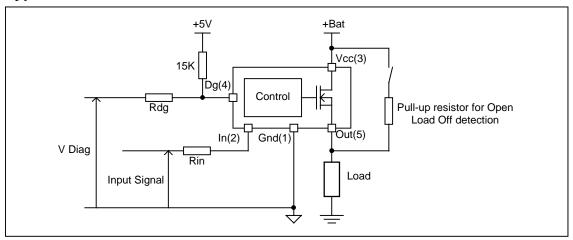
INTELLIGENT POWER HIGH SIDE SWITCH

Features

- Over temperature shutdown (with auto-restart)
- Short circuit protection (current limit)
- Active clamp
- Open load detection
- Logic ground isolated from power ground
- ESD protection
- Ground loss protection
- Status feedback


Description

The IPS7081(R)(S)PbF is a five terminal Intelligent Power Switch (IPS) with built in short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The output current is limited at Ilim value. Current limitation is activated until the thermal protection acts. The over-temperature protection turns off the device if the junction temperature exceeds Tshutdown. It will automatically restart after the junction has cooled 7°C below Tshutdown. A diagnostic pin is provided for status feedback of short circuit, over-temperature and open load detection. The double level shifter circuitry allows large offsets between the logic ground and the load.


Product Summary

Rds(on)70mΩ max.Vclamp70VI Limit5A (typ.)Open load3V

Package

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vout	Maximum output voltage	Vcc-65	Vcc+0.3	
Voffset	Maximum logic ground to load ground offset	Vcc-65	Vcc+0.3	
Vin	Maximum input voltage	-0.3	5.5	V
Vcc max.	Maximum Vcc voltage	_	65	
Vcc cont.	Maximum continuous Vcc voltage	_	35	
lin max.	Maximum IN current	-1	10	mA
ldg max.	Maximum diagnostic output current	-1	10	IIIA
Vdg	Maximum diagnostic output voltage	-0.3	5.5	V
Pd	Maximum power dissipation (internally limited by thermal protection) Rth=50°C/W	_	2.5	W
Isd cont.	Maximum continuous diode current (Rth=50°C/W)	_	2.2	Α
ESD1	Electrostatic discharge voltage (Human body) 100pF, 1500Ω	_	4	kV
ESD2	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω,L=10μH	_	0.5	ĸV
Tj max.	Max. storage & operating temperature junction temperature	-40	+150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient D-Pak std. footprint	70	_	
Rth2	Thermal resistance junction to ambient D-Pak 1" sqrt. footprint	50	_	°C/W
Rth3	Thermal resistance junction to case D-Pak / TO220 / D2Pak	3	_	C/VV
Rth1	Thermal resistance junction to ambient TO220 free air	60	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4	5.5	
VIL	Low level input voltage	-0.3	0.9	
lout	Continuous drain current, Tamb=85°C, Tj=125°C, Vin=5V, Rth=50°C/W	_	2.3	Α
Rin	Recommended resistor in series with IN pin	4	10	
Rdgs	Recommended resistor in series with DG pin	10	20	kΩ
Rol	Recommended pull-up resistor for open load detection	5	100	

Static Electrical Characteristics

Tj=25°C, Vcc=14V (unless otherwise specified)

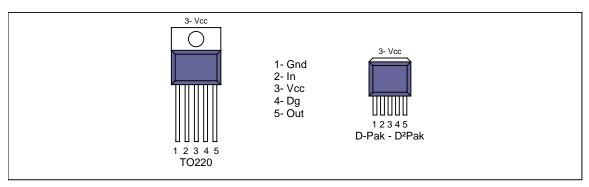
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
	ON state resistance Tj=25°C	_	55	70		Vin=5V, Iout=2A
Rds(on)	ON state resistance Tj=150°C	_	100	130	mΩ	Vin=5V, Iout=2A
	ON state resistance Tj=25°C, Vcc=6.5V		60	80		Vin=5V, Iout=2A
Vcc op.	Operating voltage range	6	_	35		
V clamp 1	Vcc to Out clamp voltage 1	65	70	_	V	lout=30mA (see Fig. 1)
V clamp 2	Vcc to Out clamp voltage 2	_	70	75	\ \ \	lout=2A (see Fig. 1)
Vf	Body diode forward voltage	_	1	1.35		lout= 2.5A
Icc Off	Supply current when Off	_	2.5	10	μΑ	Vin=0V, Vout=0V
Icc On	Supply current when On	_	2.5	3.5	mA	Vin=5V
lout@0V	Output leakage current	_	2.5	10		Vout=0V
lout@6V	Output leakage current	_	20	_	μA	Vout=6V
ldg leakage	Diagnostic output leakage current	_	_	10		Vdg=5.5V
Vdgl	Low level diagnostic output voltage	_	0.2	0.3		ldg=1.6mA
Vih	Input high threshold voltage	_	2.5	3.5		
Vil	Input low threshold voltage	1	2	_		
In hys	Input hysteresis	0.15	0.5	1	V	
UV high	Under voltage high threshold voltage	_	5	5.9		
UV low	Under voltage low threshold voltage	3.4	4.5	_		
UV hys	Undervoltage hysteresis	0.1	0.5	1.5		
lin On	Input current when device is On	_	40	80	μA	Vin=5V

Switching Electrical Characteristics Vcc=14V, Resistive load=6Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time	_	16	45		
Tr1	Rise time to Vout=Vcc-5V	_	10	40	μs	
Tr2	Rise time to Vout=0.9 x Vcc	_	20	100		
dV/dt (On)	Turn On dV/dt	_	0.8	3	V/µs	
EOn	Turn On energy	_	100	_	μJ	See Fig. 3
Tdoff	Turn-off delay time	_	25	50		
Tf	Fall time to Vout=0.1 x Vcc	_	7.5	25	μs	
dV/dt (Off)	Turn Off dV/dt	_	1.6	3	V/µs	
EOff	Turn Off energy	_	25	_	μJ	
Tdiag	Vout to Vdiag propagation delay	_	15	_	μs	See Fig. 4 and Fig. 12

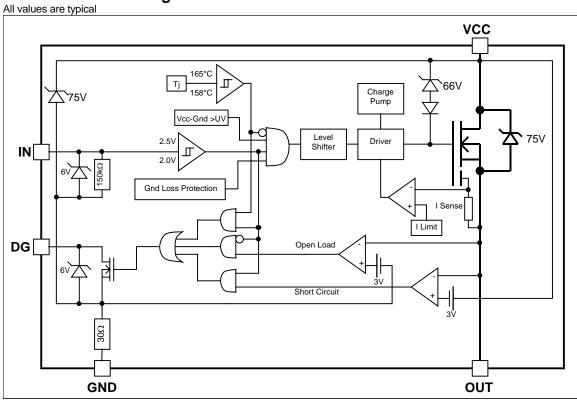
Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ilim	Internal current limit	2	7	10	Α	Vout=0V
Tsd+	Over temperature high threshold	150 ⁽¹⁾	165	_	°C	See Fig. 2
Tsd-	Over temperature low threshold	_	158	_	C	See Fig. 2
Vsc	Short-circuit detection voltage (2)	2	3	4	W	
Vopen load	Open load detection threshold	2	3	4	V	

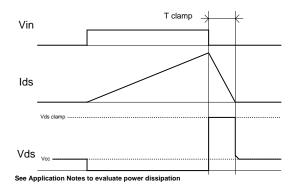

⁽¹⁾ Guaranteed by design (2) Reference to Vcc

Truth Table

Operating Conditions	IN	OUT	DG pin
Normal	Н	Н	Η
Normal	L	L	L
Open Load	Н	Н	Н
Open Load (3)	L	Н	Н
Short circuit to Gnd	Н	L (limiting)	L
Short circuit to Gnd	L	L	L
Over-temperature	Н	L (cycling)	L
Over-temperature	L	L	L


⁽³⁾ With a pull-up resistor connected between the output and Vcc.

Lead Assignments



Functional Block Diagram

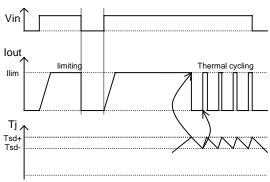
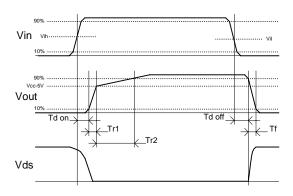
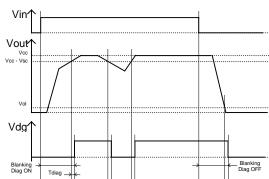
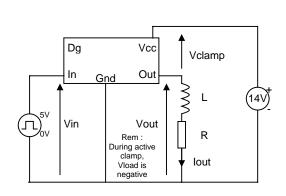
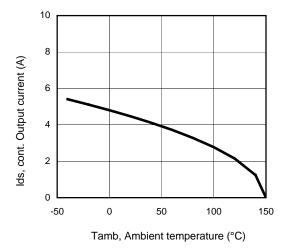




Figure 1 - Active clamp waveforms

Figure 2 - Protection timing diagram


Figure 4 - Diagnostic delay definition

10

Figure 5 - Active clamp test circuit

Figure 6 – Max. Output current (A) Vs Load inductance (µH)

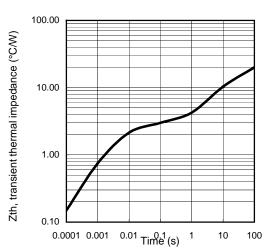
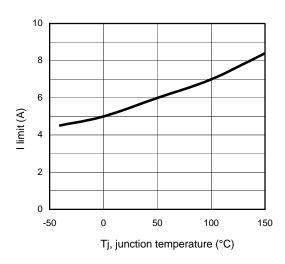
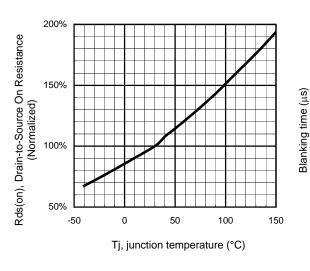



Figure 7 – Max. ouput current (A)
Vs Ambient temperature (°C) Rth=50°C/W


Figure 8 – Transient thermal impedance (°C/W) Vs time (s)

1500 ((n)) 1000 Eon Eoff 500 0 1 2 3 4 5 6 lout, Output current (A)

Figure 9 –I limit (A)
Vs junction temperature (°C)

Figure 10 – Switching energy (µJ) Vs Output current (A)

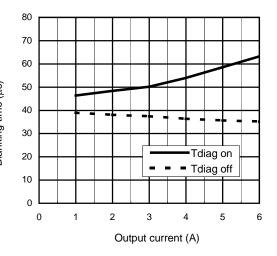
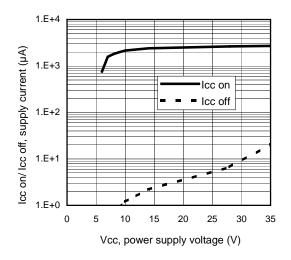
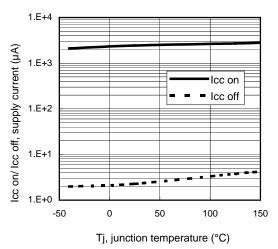
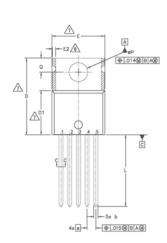
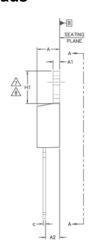
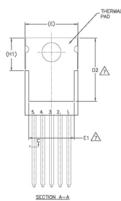



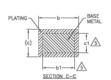
Figure 11 - Normalized Rds(on) (%) Vs Tj (°C)

Figure 12 – Diagnosis Blanking time (μs) Vs Output current (A)


Figure 13 – Icc on/ Icc off (µA) Vs Vcc (V)


Figure 14 – Icc on/ Icc off (µA) Vs Tj (°C)


Case outline - TO220 - 5 leads

SYMBOL	DIMENSIONS					
B	MILLIM	ETERS	INC	HES	NOT-EN	
Ľ	MIN.	MAX.	MIN.	MAX.	S	
Α	3.56	4.83	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.03	2.92	.080	.115		
ь	0.64	0.89	.025	.035		
Ь1	0.64	0.84	.025	.033	5	
c	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
e	1.70	BSC	.067 BSC		7	
H1	5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
фP	3.53	3.73	.139	.147		
Q	2.54	3.05	.100	.120		

- NOTES:

 1.— DIMENSIONIS AND TOLERANCING AS PER ASME Y14.5 M— 1894.

 2.— DIMENSIONS ARE SIGION IN INCRES [MILLIMETERS].

 3.— LEAD DIMENSION AND FINISH INCONTROLLED IN L1.

 4.— DIMENSION IN, 01 & E DO NOT INCLIDE MOLD FLASH WILD FLASH SHALL NOT EXCEED ON'S (0.127) PER 200. THESE DIMENSIONS ARE

 MACAINED AT THE OLITIMENSION EXTREMES OF THE PLASTIC BOOT.

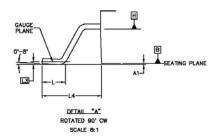
 DIMENSION DI & e.I. APPLY TO BASE METAL ONLY.

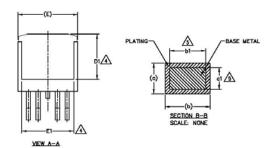
 5.— CONTROLLED OWNERSON: NOMES.

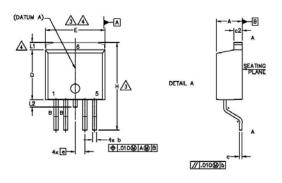
 7.— THERMAL PAD CONTICK OPTIONAL WITHIN DIMENSIONS EHILD? & E.I.

 DIMENSION DE X HI DETRIE A ZONE HEIDER STARPING

 AND SINGULATION INFEGULARITIES ARE ALLOWED.


 9.— OLITIME CONFORMS TO LEGEC TO 220, EXCEPT 12 (mex.) AND D2 (min.)


 WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE CUITLINE.

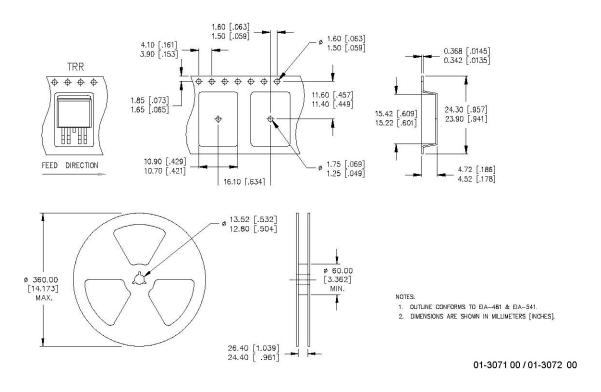

10.- LEADS AND DRAIN ARE PLATED WITH 100% Sn

Case Outline - D2pak - 5 leads

NOTES:

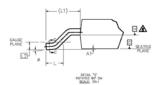
- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

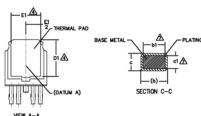
DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 (.005") PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

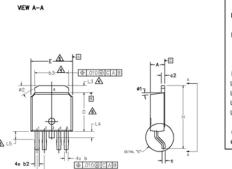

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

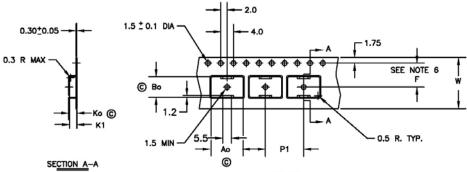
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263BA.
- 9 LEADS AND DRAIN ARE PLATED : 100% Sh


S Y M	DIMENSIONS					
B	МІШМ	ETERS	INC	HES	OT E	
L C	MIN.	MAX.	MIN.	MAX.	S	
Α	4.06	4.83	.160	.190		
A1	-	0.254	-	.010		
ь	0.51	0.99	.020	.039	4	
Ь1	0.51	0.89	.020	.035		
С	0.38	0.74	.015	.029		
e1	0.38	0.58	.015	.023	4	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270	-		
Ε	9.65	10.67	.380	.420	3	
E1	6.22	-	.245	-		
e	1.70	BSC	.067	BSC		
н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	100	1.68		.066		
L2	1-	1.78	-	.070		
L3	0.25	BSC	.010			
L4	4.78	5.28	.188	.208		
_						


Tape and Reel - D2Pak - 5 leads



Case Outline - Dpak - 5 leads



S		DIMENSIONS				
B	MILLIM	ETERS	INC	HES	ÿ	
B O L	MIN.	MAX.	MIN.	MAX.	Ė	
Α	2.18	2.39	.086	.094		
A1	-	0.13	-	.005		
ь	0.51	0.89	.020	.035		
ь1	.051	0.84	.020	.033	2	
ь3	4.95	5.46	.195	.215	2	
c	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	2	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	3	
D1	5.21	-	.205	-		
E	6.35	6.73	.250	.265	3	
E1	4.32	-	.170	-		
e	1.14	1.14 BSC		BSC		
Н	9.40	10.41	.370	.410]	
L	1.40	1.78	.055	.070		
L1	2.74	BSC	.108	REF.]	
L2	0.51	BSC	.020	BSC]	
L3	0.89	1.27	.035	.050	1	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060		
ø	0.	10°	0.	10°		
ø1	0.	15*	0.	15*		
ø2	28*	32*	28*	32*		

NOTES:

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- 8.- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252.
- 10. LEADS AND DRAIN ARE PLATED WITH 100% Sn

Tape & Reel - Dpak - 5 leads

10.5 mm 7.0 mm Ao Bo Ko K1 F 2.8 mm 2.4 mm 7.5 mm 12.0 mm 16.0 ± .3 mm

NOTES:

- 10 SPROCKET HOLE PUNCH CUMULATIVE TOLERANCE ±.02 CAMBER NOT TO EXCEED 1mm IN 100mm MATERIAL: CONDUCTIVE BLACK POLYSTYRENE AO AND BO MEASURED ON A PLANE 0.3mm ABOVE THE BOTTOM OF THE POCKET
- 5.
- KO MEASURED FROM A PLANE ON THE INSIDE BOTTOM OF THE POCKET TO THE TOP SURFACE OF THE CARRIER POCKET POSITION RELATIVE TO THE SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE 6.

- VENDOR: (OPTIONAL)
 MUST ALSO MEET REQUIREMENTS OF EIA STANDARD #EIA-481A,
 TAPING OF SURFACE-MOUNT COMPONENTS FOR AUTOMATIC
 PLACEMENT.
 TOLERANCE TO BE MANUFACTURER STANDARD
 SURFACE RESISTIVITY OF MOLDED MATL: MUST MEASURE
 LESS THAN OR EQUAL TO 10* OHMS PER SQUARE. MEASURED
 IN ACCORDANCE TO PROCEDURE GYEN IN ASTM D-257 &
 ASTM D-901 (PEE C-0000 SPEC)
- ASTM D-991 (REF. C-9000 SPEC.)
 TOTAL LENGTH PER REEL MUST BE 79 METERS
- 12. C CRITICAL DIMENSION

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. TO220, Dpak and D2Pak are MSL1 qualified.

This product has been designed and qualified for the Automotive [Q100] market. 06/02/2007