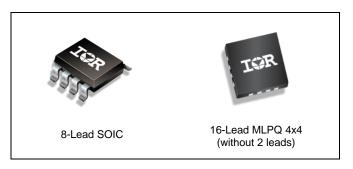


High and Low Side Driver

Features

- Gate drive supplies up to 20V per channel
- Undervoltage lockout for V_{CC}, V_{BS}
- 3.3 V, 5V, 15V input logic compatible
- Tolerant to negative transient voltage
- Designed for use with bootstrap power supplies
- · Matched propagation delays
- Output in phase with the Inputs
- -40°C to 125°C operating range
- RoHS compliant

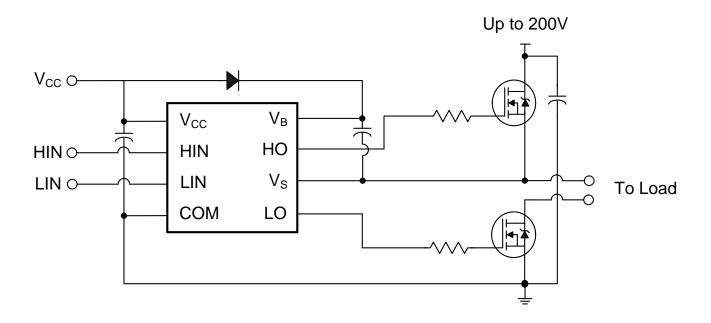

Description

The IRS2005 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 200 V. Propagation delays are matched to simplify the HVIC's use in high frequency applications.

Product Summary

Voffset	≤ 200V
Vouт	10 V – 20V
I _{o+} & I _{o-} (typ.)	290mA & 600mA
ton & toff (typ.)	160ns & 150ns
Delay matching (max.)	50ns

Package Options


Typical Applications

- Appliance motor drives
- Servo drives
- Micro inverter drives
- General purpose three phase inverters

Daga Bart Normhan	Deelses Tone	Standar	d Pack	Onderskie Deut Neusken	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number	
	8-Lead SOIC	Tube/Bulk	95	IRS2005SPBF	
IRS2005SPBF		Tape and Reel	2500	IRS2005STRPBF	
IRS2005MPBF	14-Lead MLPQ 4x4	Tape and Reel	3000	IRS2005MTRPBF	

Typical Connection Diagram

(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer tour Application Notes & DesignTips for proper circuit board layout.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition		Min.	Max.	Units
Vcc	Low side supply voltage		-0.3	25 [†]	
V _{IN}	Logic input voltage		COM - 0.3	V _{CC} + 0.3	
V _B	High-side floating well supply voltage	је	-0.3	225	
Vs	High-side floating well supply return	voltage	V _B - 25	V _B + 0.3	V
Vно	Floating gate drive output voltage		Vs - 0.3	V _B + 0.3	
V _{LO}	Low-side output voltage		COM - 0.3	Vcc + 0.3	
COM	Power ground	Power ground		V _{CC} + 0.3	
dVs/dt	Allowable V _S offset supply transient	relative to COM	_	50	V/ns
D	Package power dissipation @ T _A	8-Lead SOIC	_	0.625	w
P_D	≤+25°C	14-Lead MLPQ 4x4	_	2.08	VV
Dul	Thermal resistance, junction to	8-Lead SOIC	_	200	0000
Rth _{JA}	ambient	14-Lead MLPQ 4x4	_	36	°C/W
TJ	Junction temperature		_	150	
Ts	Storage temperature		-55	150	∘C
TL	Lead temperature (soldering, 10 se	conds)	_	300	

[†] All supplies are tested at 25V.

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The offset rating is tested with supplies of $(V_{CC} - COM) = (V_B - V_S) = 15V$.

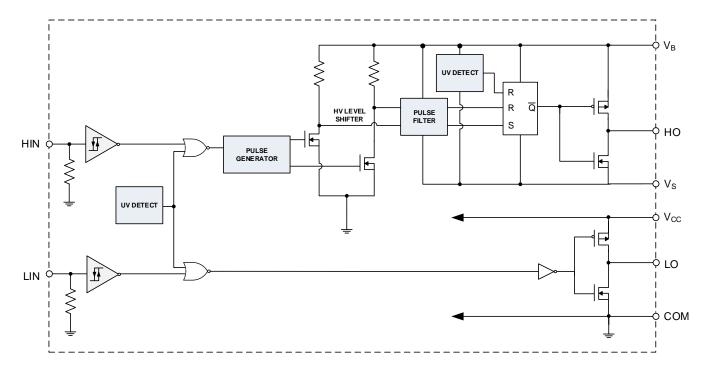
Symbol	Definition	Min	Max	Units
Vcc	Low-side supply voltage	10	20	V
V_{IN}	Logic input voltage	0	Vcc	
V _B	High-side floating well supply voltage	Vs + 10	Vs + 20	
Vs	High-side floating well supply offset voltage [†]	COM - 8 [†]	200	
V _{HO}	Floating gate drive output voltage	Vs	V _B	
V_{LO}	Low-side output voltage	COM	Vcc	
TA	Ambient temperature	-40	125	°C

[†] Logic operation for VS of -8 V to 200 V. Logic state held for V_S of -8 V to $-V_{BS}$. Please refer to Design Tip DT97-3 for more details.

Static Electrical Characteristics

 $(V_{CC} - COM) = (V_B - V_S) = 15V$. $T_A = 25^{\circ}C$ unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to respective V_S and COM and are applicable to the respective output leads HO or LO. The V_{CCUV} parameters are referenced to COM. The V_{BSUV} parameters are referenced to V_S .

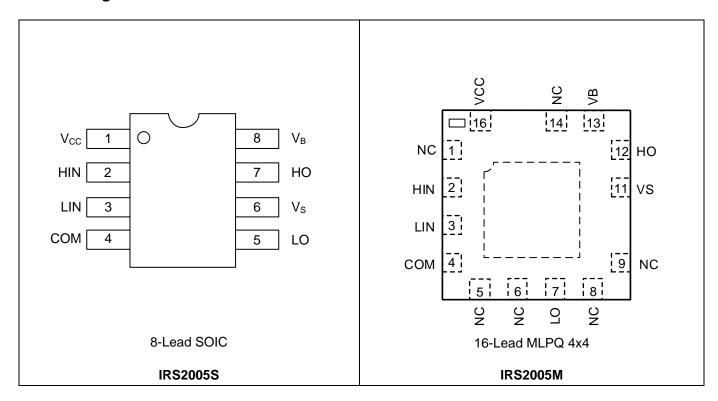
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold	7.4	8.2	9		
V _{BSUVHY}	V _{BS} supply undervoltage hysteresis	_	0.7	_	V	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	8.0	8.9	9.8	V	
V _{CCUV} -	V _{CC} supply undervoltage negative going threshold	7.4	8.2	9		
V _{CCUVHY}	Vcc supply undervoltage hysteresis	_	0.7	_		
I _{LK}	High-side floating well offset supply leakage	_	_	50		$V_{B} = V_{S} = 200V$
I _{QBS}	Quiescent V _{BS} supply current	_	45	75	μA	All inputs are in the
I _{QCC}	Quiescent V _{CC} supply current	_	300	520		off state
V _{OH}	High level output voltage drop, V _{BIAS} -V _O	_	0.05	0.2	V	J 2 m A
V _{OL}	Low level output voltage drop, Vo	_	0.02	0.1	V	$I_0 = 2 \text{ mA}$
I _{o+}	Output high short circuit pulsed current	200	290	_	mA	$V_O = 0V$, $V_{IN} = 0V$ $PW \le 10\mu s$
l _{o-}	Output low short circuit pulsed current	420	600	_	IIIA	$V_0 = 15V, V_{IN} = 5V$ PW \le 10\mus
V _{IH}	Logic "1" input voltage	2.5	_		V	
V _{IL}	Logic "0" input voltage			0.8	V	
I _{IN+}	Input bias current (HO = High)	_	3	10		V _{IN} = 5V
I _{IN-}	Input bias current (HO = Low)	_	_	5	μA	V _{IN} = 0V


Dynamic Electrical Characteristics

 $V_{CC} = V_B = 15V$, $V_S = COM$, $T_A = 25$ °C, and $C_L = 1000$ pF unless otherwise specified.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	160	220		Vs = 0V or 200V
toff	Turn-off propagation delay	_	150	220		VS = UV 01 200V
t _R	Turn-on rise time	_	70	170	20	Vs = 0V
t⊧	Turn-off fall time	_	30	90	ns	VS = UV
t _{FIL}	Minimum pulse input filter time	_	300			
MT	Delay matching time (ton, toff)	_	_	50		

Functional Block Diagram



Lead Definitions

Symbol	Description
VCC	Low-side and logic supply voltage
VB	High-side gate drive floating supply
VS	High voltage floating supply return
HIN	Logic inputs for high-side gate driver output (HO), in phase
LIN	Logic inputs for low-side gate driver output (LO), in phase
НО	High-side driver output
LO	Low-side driver output
СОМ	Low-side gate drive return

Lead Assignments

Application Information and Additional Details

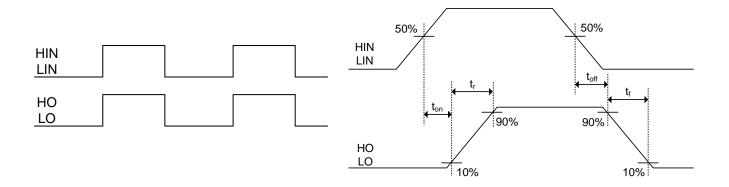


Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

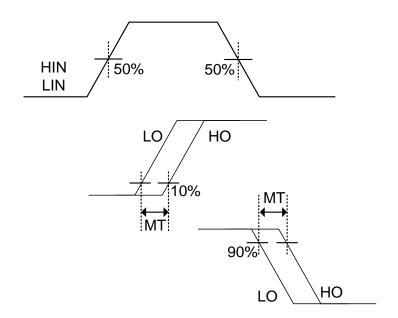
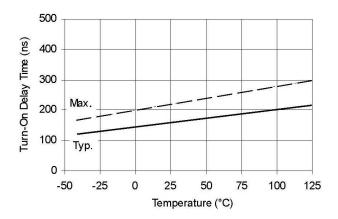



Figure 3. Delay Matching Waveform Definitions

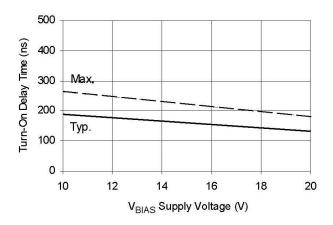
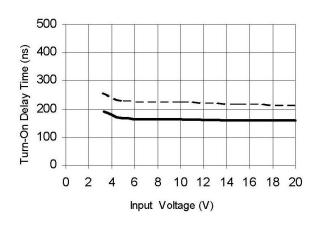



Figure 4A. Turn-On Delay Time vs. Temperature

Figure 4B. Turn-On Delay Time vs. Supply Voltage

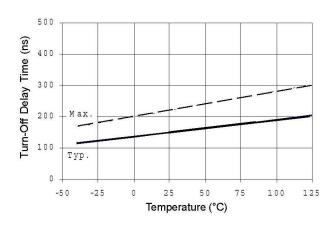
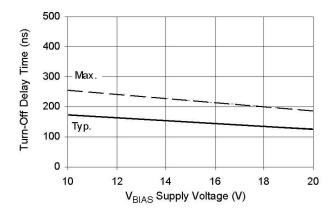



Figure 4C. Turn-On Delay Time vs. Input Voltage

Figure 5A. Turn-Off Delay Time vs. Temperature

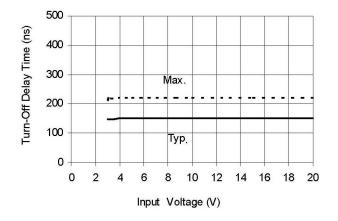
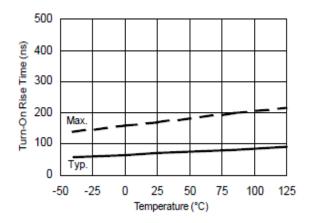



Figure 5B. Turn-Off Delay Time vs. Supply Voltage

Figure 5C. Turn-Off Time vs. Input Voltage

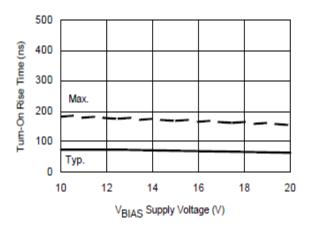
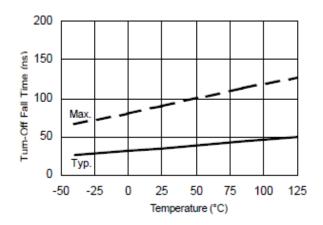



Figure 6A. Turn-On Rise Time vs. Temperature

Figure 6B. Turn-On Rise Time vs. Voltage

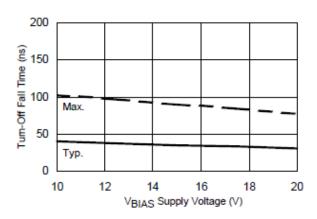
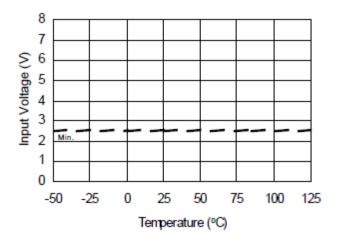



Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Voltage

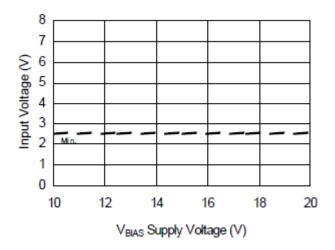


Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input Voltage vs. Voltage

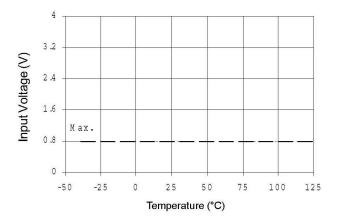


Figure 9A. Logic "0" Input Voltage vs. Temperature

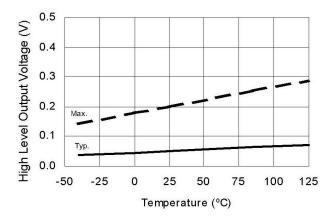


Figure 10A. High Level Output Voltage vs. Temperature

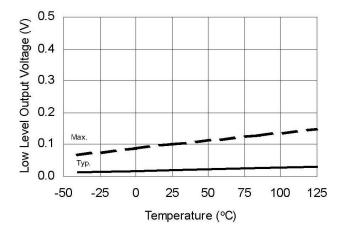


Figure 11A. Low Level Output Voltage vs. Temperature

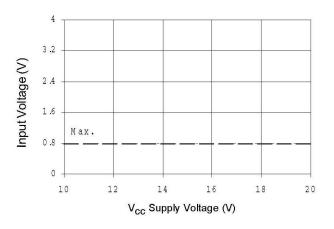


Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

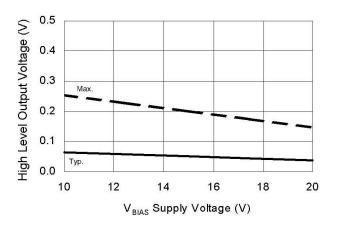
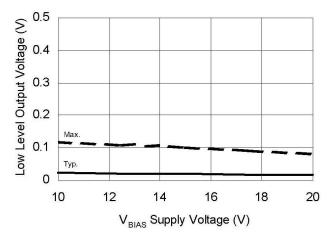
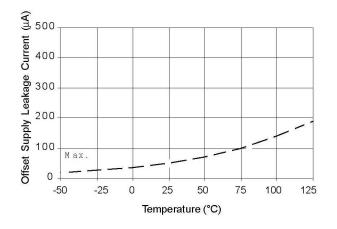
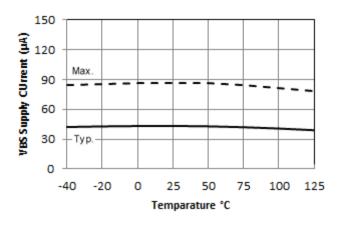


Figure 10B. High Level Output vs. Supply Voltage


Figure 11B. Low Level Output vs. Supply Voltage

Offset Supply Leakage Current (uA) 500 400 300 200 100 Max 0 0 100 300 400 500 600 200 V_B Boost Voltage (V)

Figure 12A. Offset Supply Current vs. Temperature

Figure 12B. Offset Supply Current vs. Voltage

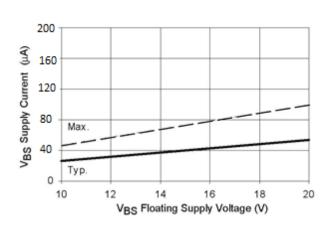
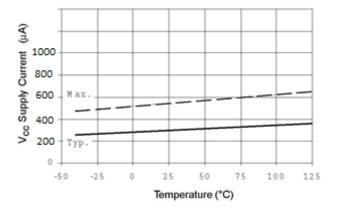



Figure 13A. V_{BS} Supply Current vs. Temperature

Figure 13B. V_{BS} Supply Current vs. Voltage

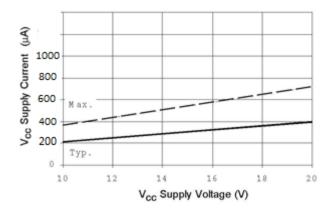


Figure 14A. V_{CC} Supply Current vs. Temperature

Figure 14B. V_{CC} Supply Current vs. Voltage

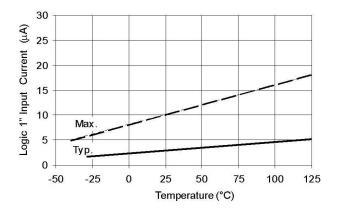


Figure 15A. Logic "1" Input Current vs. Temperature

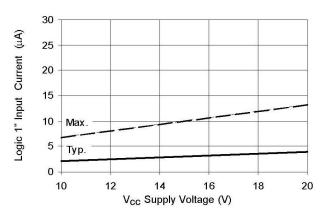


Figure 15B. Logic "1" Input Current vs. Voltage

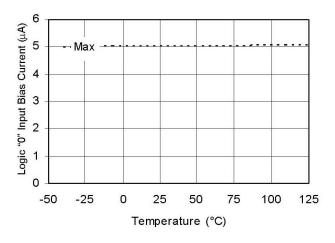


Figure 16A. Logic "0" Input Bias Current

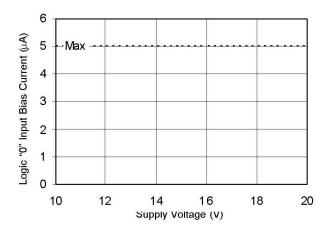


Figure 16B. Logic "0" Input Bias Current

Figure 17A. V_{CC}\V_{BS} Undervoltage Threshold(+) vs. Temperature

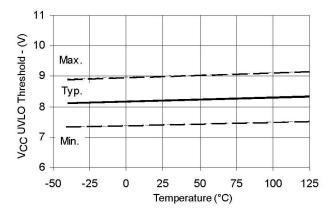
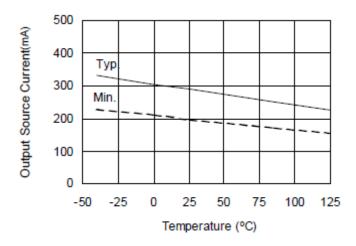



Figure 17B. $V_{CC}\V_{BS}$ Undervoltage Threshold(-) vs. Temperature

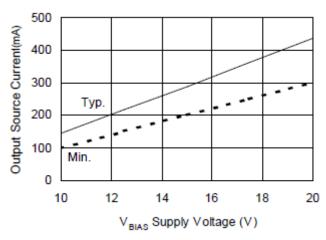
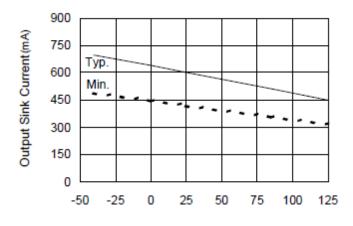



Figure 18A. Output Source Current vs. Temperature

Figure 18B. Output Source Current vs. Supply Current

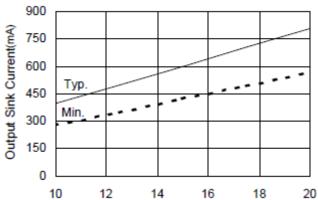
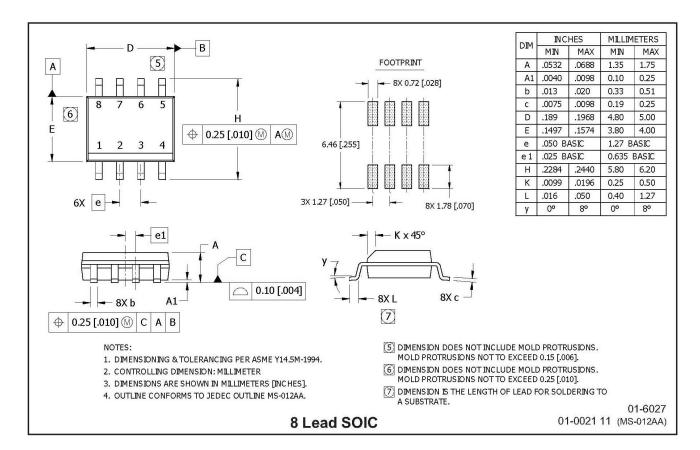
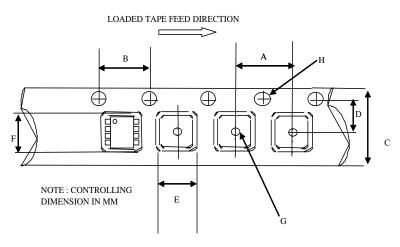
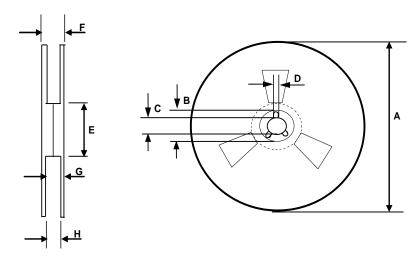



Figure 19A. Output Sink Current vs. Temperature

Figure 19B. Output Sink Current vs. Supply Voltage



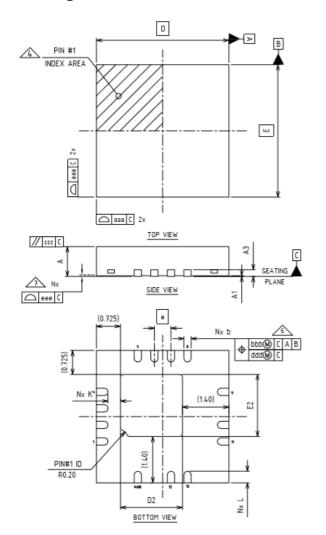
Package Details: 8-Lead SOIC



Tape and Reel Details: 8-Lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
B C D	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E F	6.30	6.50	0.248	0.255
	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 8SOICN

	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
Е	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

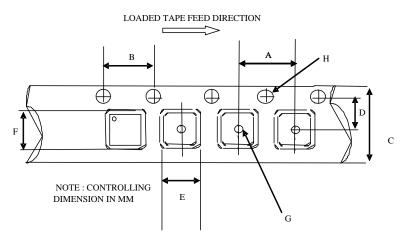
Package Details: 14-Lead MLPQ 4x4

NOTE:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.

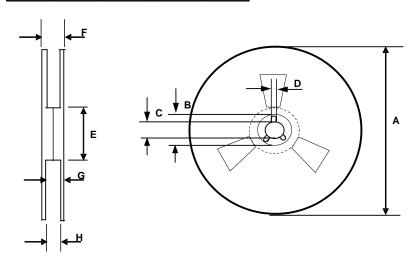
4. The location of the marked terminal #1 identifier is within the hatched area.

5. ND and NE refer to the number of terminals on each D and E side respectively.


Dimension b applies to the metalized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.

(Coplanarity applies to the terminals and all other bottom surface metalization.

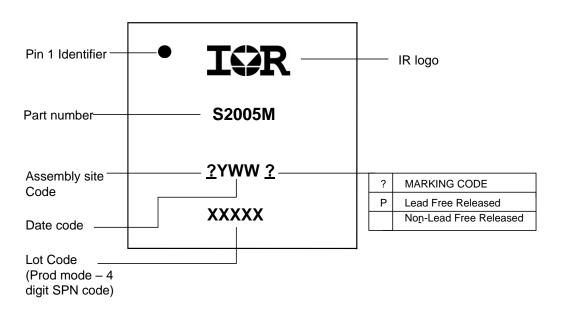
	Dimension Table				
Thickness Symbol	٧			NOTE	
mbol	MINIMUM	NOMINAL	MAXIMUM		
A	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
A3		0.20 Ref			
ь	0.18	0.25	0.30	6	
D		4.00 BSC			
E		4.00 BSC			
e		0.50 BSC			
D2	1.725	1.875	1.975		
E2	1.725	1.875	1.975		
К	0.20				
L	0.25	0.35	0.45		
aaa		0.05			
bbb		0.10			
CCC	0.10				
ddd	0.05				
eee	0.08				
N	14			3	
ND	SEE FIGURE			5	
NE				,	
NOTES		1, 2			



Tape and Reel Details: 14-Lead MLPQ 4x4

CARRIER TAPE DIMENSION FOR MLPQ4x4

	Metric		lm	perial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.358
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.461	0.484
D	5.45	5.55	0.215	0.219
E	4.25	4.45	0.168	0.176
F	4.25	4.45	0.168	0.176
G	1.50	n/a	0.069	n/a
Н	1.50	1.60	0.069	0.063


REEL DIMENSIONS FOR MLPQ4x4

	Metric		lm	perial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

8-Lead SOIC8 IRS2005SPBF

14-Lead MLPQ 4x4 IRS2005MPBF

Qualification Information[†]

Qualification Level			Industrial ^{††}	
		qualification. IR's Cons	Comments: This family of ICs has passed JEDEC's Industrial qualification. IR's Consumer qualification level is granted by extension of the higher Industrial level.	
Moisture Sensitivity Level		8 Lead SOIC	MSL2 ^{†††} , 260°C (per IPC/JEDEC J-STD-020)	
		14-Lead MLPQ 4x4		
ESD	Human Body Model	Class 2 (per JEDEC standard JESD22-A114)		
	Machine Model	Class A (per EIA/JEDEC standard EIA/JESD22-A115)		
IC Latch-Up Test			Class I (per JESD78)	
RoHS Compliant			Yes	

- Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- † †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- Higher MSL ratings may be available for the specific package types listed here. Please contact your International ††† Rectifier sales representative for further information.