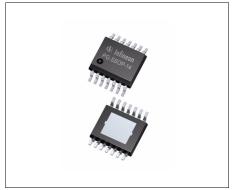
TLE7278-2

Low Dropout Voltage Regulator

Automotive Power

Low Dropout Voltage Regulator

TLE7278-2


1 Overview

Features

- Output Voltage 5 V, 3.3 V or 2.6 V
- Output Voltage Tolerance ±2%
- Output Current Up To 180 mA
- Ultra Low Quiescent Current Consumption < 36 μA
- Enable Function
- · Very Low Dropout voltage
- Reset With Adjustable Power-On Delay
- Standard Watchdog With Current Dependent Deactivation
- · Output Current Limitation
- Wide Operation Range Up To 45 V
- Wide Temperature Range From -40 °C To 150 °C
- Overtemperature Shutdown
- Green Product (RoHS compliant)
- AEC Qualified

PG-DSO-14

PG-SSOP-14 Exposed Pad

Description

The TLE7278-2 is a monolithic integrated voltage regulator with integrated standard watchdog and reset dedicated for microcontroller supplies under harsh automotive environment conditions. The watchdog circuit is deactivated for very low loads at the device's output (e.g. microcontroller in standby mode).

Due to its ultra low quiescent current the TLE7278-2 is perfectly suited for applications that are permanently connected to battery. In addition, the regulator can be shut down via the Enable input causing the current consumption to drop below 3 μ A. The TLE7278-2 is equipped with an overtemperature shutdown and an output current limitation protecting the device against overload, short circuit and overtemperature. It operates in the wide junction temperature range from -40 °C to 150 °C.

Туре	Package	Marking
TLE7278-2GV50	PG-DSO-14	TLE7278-2GV50
TLE7278-2GV33	PG-DSO-14	TLE7278-2GV33
TLE7278-2GV26	PG-DSO-14	TLE7278-2GV26
TLE7278-2EV50	PG-SSOP-14 Exposed Pad	7278 V50

Block Diagram

2 Block Diagram

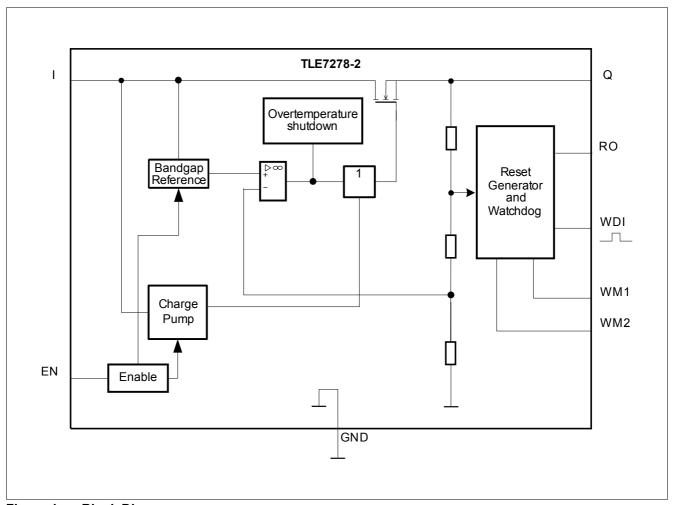


Figure 1 Block Diagram

Pin Configuration

3 Pin Configuration

3.1 Pin Assignment (PG-DSO-14)

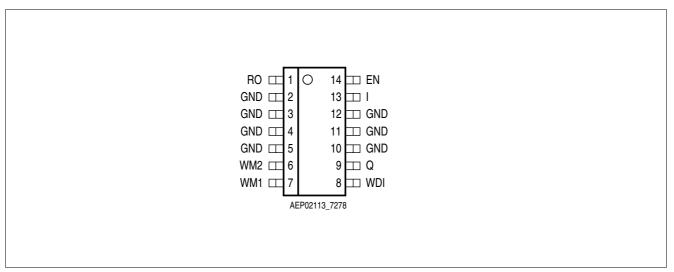


Figure 2 Pin Configuration

3.2 Pin Definitions and Functions (PG-DSO-14)

Pin	Symbol	Function
1	RO	Reset Output TLE7278-2GV33, TLE7278-2GV26: open drain output; TLE7278-2GV50: integrated 20 kΩ pull-up resistor
2-5, 10-12	GND	Ground connect pin 2 and 3 to GND; connect pin 4-5, 10-12 to PCB heat sink area with GND potential
7	WM1	Watchdog Mode Bit 1 watchdog and Reset mode selection, see Figure 5; connect to Q or GND
6	WM2	Watchdog Mode Bit 2 watchdog and reset mode selection, see Figure 5; connect to Q or GND
8	WDI	Watchdog Input trigger input for watchdog pulses; pull down to GND if not needed and turn off the watchdog with WM1 and WM2 pin
9	Q	Output Voltage block to GND with a ceramic capacitor close to the IC terminals, respecting the values given for its capacitance $C_{\rm Q}$ and ESR in "Functional Range" on Page 7
13	I	Input Voltage block to ground directly at the IC with a 100 nF ceramic capacitor
14	EN	Enable Input low level disables the IC; integrated pull-down resistor to GND

Pin Configuration

3.3 Pin Assignments (PG-SSOP-14 Exposed Pad)

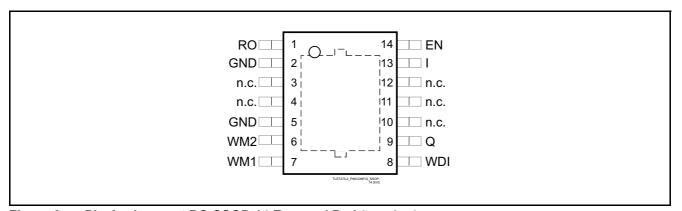


Figure 3 Pin Assignment PG-SSOP-14 Exposed Pad (top view)

3.4 Pin Definitions and Functions (PG-SSOP-14 Exposed Pad)

Table 1 Pin Definitions and Functions

Pin No.	Symbol	Function
1	RO	Reset Output integrated 20 $k\Omega$ pull-up resistor; leave open if not needed
2, 5	GND	Ground connect to GND
3, 4, 10, 11, 12	n.c.	not connected leave open or connect to GND
6	WM2	Watchdog Mode Bit 2 watchdog and reset mode selection, see Figure 5; connect to Q or GND
7	WM1	Watchdog Mode Bit 1 watchdog and Reset mode selection, see Figure 5; connect to Q or GND
8	WDI	Watchdog Input trigger input for watchdog pulses; pull down to GND if not needed and turn off the watchdog with WM1 and WM2 pin
9	Q	Output Voltage block to GND with a ceramic capacitor close to the IC terminals, respecting the values given for its capacitance $C_{\rm Q}$ and ESR in "Functional Range" on Page 7
13	I	Input Voltage block to ground directly at the IC with a 100 nF ceramic capacitor
14	EN	Enable Input low level disables the IC; integrated pull-down resistor
Pad	_	Exposed Pad connect to heatsink area; connect to GND on PCB

General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Absolute Maximum Ratings 1)

 $T_{\rm j}$ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Lin	nit Values	Unit	Conditions
			Min.	Max.		
Input I		-	+	+	+	-
4.1.1	Voltage	V_1	-0.3	45	V	_
Output	Q, Reset Output RO, Watchdog Mod	de 2		<u>'</u>		
4.1.2	Voltage	V_{Q}	-0.3	5.5	V	permanent
4.1.3	Voltage	V_{Q}	-0.3	6.2	V	$t < 10 \text{ s}^{2)}$
Enable	Input EN		•			·
4.1.4	Voltage	V_{EN}	-1	45	V	_
4.1.5	Current	I_{EN}	-1	1	mA	_
Watchd	og Input WDI	·	·		·	
4.1.6	Voltage	V_{RO}	-1	7	V	permanent
Watchd	og Mode 1	·	·		·	
4.1.7	Voltage	V_{WM1}	-0.3	5.5	V	permanent
4.1.8	Voltage	V_{WM1}	-0.3	6.2	V	$t < 10 \text{ s}^{2)}$
4.1.9	Current	I_{WM1}	-5	5	mA	-
ESD Su	sceptibility	·	·		·	
4.1.10	Human Body Model (HBM) ³⁾	Voltage	_	3	kV	_
4.1.11	Charge Device Model (CDM) ⁴⁾	Voltage	_	1.5	kV	_
Temper	atures		•			·
4.1.12	Junction temperature	T_{j}	-40	150	°C	_
4.1.13	Storage temperature	$T_{ m stg}$	-50	150	°C	_

¹⁾ not subject to production test, specified by design

Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

²⁾ exposure to these absolute maximum ratings for extended periods (t > 10 s) may affect device reliability

³⁾ ESD HBM Test according to JEDEC JESD22-A114

⁴⁾ ESD CDM Test according AEC/ESDA ESD-STM5.3.1-1999

General Product Characteristics

4.2 Functional Range

Pos.	Parameter	Symbol	Limit Values		Limit Values Unit	
			Min.	Max.		
4.2.1	Input voltage	V_1	5.5	45	V	TLE7278-2GV50, TLE7278-2EV50
4.2.2			4.2	45	V	TLE7278-2GV33
4.2.3			4.5	45	V	TLE7278-2GV26
4.2.4	Output Capacitor's Requirements	C_{Q}	470	_	nF	_1)
	for Stability	$ESR(C_{Q})$	_	3	Ω	_2)
4.2.5	Junction Temperature	T_{j}	-40	150	°C	_

¹⁾ the minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%

Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.

4.3 Thermal Resistance

Pos.	Parameter	Symbol		Limit Values			Conditions
			Min.	Тур.	Max.		
Packag	ge PG-DSO-14		- 1			<u> </u>	
4.3.1	Junction to Soldering Point ¹⁾	R_{thJSP}	_	30	-	K/W	measured to group of pins 3, 4, 5, 10, 11, 12
4.3.2	Junction to Ambient ¹⁾	R_{thJA}	_	53	_	K/W	2)
4.3.3			_	105	_	K/W	footprint only ³⁾
4.3.4			_	74	_	K/W	300 mm ² heatsink area on PCB ³⁾
4.3.5			_	65	-	K/W	600 mm ² heatsink area on PCB ³⁾
Packaç	ge PG-SSOP-14 Exposed Pad	+			+		
4.3.6	Junction to Case ¹⁾	R_{thJC}	_	14	_	K/W	measured to exposed pad
4.3.7	Junction to Ambient ¹⁾	R_{thJA}	_	47	_	K/W	2)
4.3.8			_	141	_	K/W	footprint only ³⁾
4.3.9			-	66	_	K/W	300 mm ² heatsink area on PCB ³⁾
4.3.10			_	56	-	K/W	600 mm ² heatsink area on PCB ³⁾

¹⁾ not subject to production test, specified by design

²⁾ relevant ESR value at f = 10 kHz

²⁾ Specified R_{thJA} value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

³⁾ Specified R_{thJA} value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 1 copper layer (1 x 70µm Cu).

5 Block Description and Electrical Characteristics

5.1 Circuit Description

5.1.1 Power On Reset and Reset Output

For an output voltage level $V_{\rm Q} \ge 1$ V the reset output is hold low. When the level of $V_{\rm Q}$ reaches the reset threshold $V_{\rm RT}$, the signal at RO remains low for the power-up reset delay time $t_{\rm RD}$. The reset function and timing is illustrated in **Figure 4**. The reset reaction time $t_{\rm RR}$ avoids wrong triggering caused by short "glitches" on the $V_{\rm Q}$ -line. In case of $V_{\rm Q}$ power down ($V_{\rm Q} < V_{\rm RT}$ for $t > t_{\rm RR}$) a logic low signal is generated at the pin RO to reset an external micro controller.

The TLE7278-2GV50 and TLE7278-2EV50 feature an integrated pull-up resistor on the reset output while the TLE7278-2GV33 and TLE7278-2GV26 have an open drain output requiring an external pull-up resistor. When connected to a voltage level of $V_{\rm ext}$ = 5 V, a recommended value for this external resistor is \geq 5.6 k Ω .

But it's also possible calculating its value by using the following formula, based on the reset sink current (Example: external pull-up resistor connected to $V_{\rm ext}$ = 5 V):

$$R_{\rm extmin}$$
 = ΔV / $I_{\rm RO}$ = ($V_{\rm ext}$ - $V_{\rm ROmin})$ / $I_{\rm RO}$ = (5 V - 0.25 V) / 1.0 mA = 4.75 k Ω

At low output voltage levels $V_{\rm Q}$ < 1 V the integrated pull-up resistor of the TLE7278-2GV50 is switched off setting the reset output high ohmic.

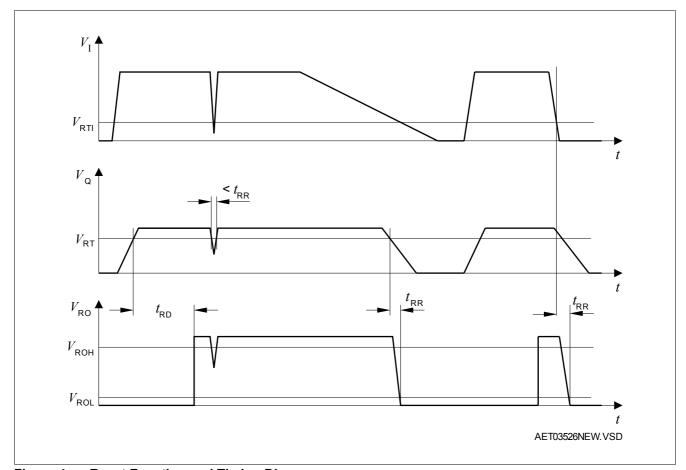


Figure 4 Reset Function and Timing Diagram

5.1.2 Watchdog Operation

The watchdog uses a fraction of the charge pump oscillator's clock signal as timebase. The watchdog timebase can be adjusted using the pins WM1 and WM2 (see **Figure 5**). The watchdog can be turned off setting WM1 and WM2 to high level. The timing values used this text refer to typ. values with WM1 and WM2 connected to GND (fast watchdog and reset timing).

If the timebase is switched by changing the condition on the WM pins, the new timing is valid from the beginning of the new period on. From this time on, the frequency on the WDI pin must be adapted.

Figure 5 shows the state diagram of the watchdog (WD) and the mode selection. After power-on, the reset output signal at the RO pin (microcontroller reset) is kept LOW for the reset delay time T_{RD} of typ. 16 ms. With the LOW to HIGH transition of the signal at RO the device starts the ignore window time t_{CW} (32 ms). Next the WD starts the Watchdog Period (time frame within a trigger at WDI must occur). From now on the timing of the signal on WDI from the micro controller must correspond the WD-Period $t_{WD,p}$ correspondent the electrical characteristics and based on the setting on the WM pins. A Re-Trigger of the WD-Period is done with a HIGH-to-LOW Transient at the WDI-pin within the set $t_{WD,p}$.

A HIGH to LOW transition of the watchdog trigger signal on pin WDI is taken as a trigger. To avoid wrong triggering due to parasitic glitches two HIGH samples followed by two LOW samples (sample period t_{sam} typ. 0.5 ms) are decoded as a valid trigger. A reset is generated (RO goes LOW) if there is no trigger pulse during the Watchdog Period.

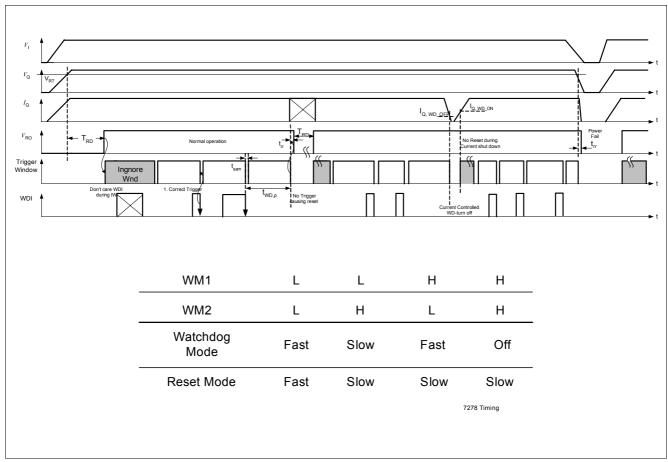


Figure 5 Watchdog Timing Diagram, Watchdog and Reset Modes

5.2 Electrical Characteristics

Electrical Characteristics

 $V_{\rm I}$ = 13.5 V, $T_{\rm j}$ = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.		
Output	Q	-				"	
5.2.1	Output voltage	V_{Q}	4.90	5.00	5.10	V	TLE7278-2GV50, TLE7278-2EV50 1 mA < $I_{\rm Q}$ < 180 mA 6 V < $V_{\rm I}$ < 16 V
5.2.2	Output voltage	V_{Q}	4.90	5.00	5.10	V	TLE7278-2GV50, TLE7278-2EV50 $I_{\rm Q}$ = 10 mA 6 V < $V_{\rm I}$ < 45 V
5.2.3	Output voltage	V_{Q}	3.234	3.30	3.366	V	TLE7278-2GV33 1 mA < $I_{\rm Q}$ < 180 mA 4.5 V < $V_{\rm I}$ < 16 V
5.2.4	Output voltage	V_{Q}	3.234	3.30	3.366	V	TLE7278-2GV33 $I_{\rm Q}$ = 10 mA 4.5 V < $V_{\rm I}$ < 45 V
5.2.5	Output voltage	V_{Q}	2.548	2.60	2.652	V	TLE7278-2GV26 1 mA < $I_{\rm Q}$ < 180 mA 4.5 V < $V_{\rm I}$ < 16 V
5.2.6	Output voltage	V_{Q}	2.548	2.60	2.652	V	TLE7278-2GV26 $I_{\rm Q}$ = 10 mA 4.5 V < $V_{\rm I}$ < 45 V
5.2.7	Output current limitation	I_{Q}	200	_	500	mA	V _Q = 2.0 V
			200	_	600	mA	$V_{\rm Q}$ = 0 V
5.2.8	Dropout Voltage; $V_{DR} = V_{I} - V_{Q}$	V_{DR}	_	250	500	mV	$I_{\rm Q}$ = 180 mA ¹⁾ TLE7278-2GV50, TLE7278-2EV50
5.2.9	Load regulation	$\Delta V_{\mathrm{Q,Lo}}$	_	50	90	mV	1 mA < I _Q < 180 mA
5.2.10	Line regulation	$\Delta V_{Q,Li}$	-	10	50	mV	$I_{\rm Q}$ = 1 mA; 10 V < $V_{\rm I}$ < 32 V
5.2.11	Power-Supply-Ripple-Rejection	PSRR	_	60	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp
5.2.12	Reverse Output Current Clamping	$V_{Q,REV}$	_	_	5.5	V	$I_{\rm Q,REV}$ = -1 mA; $V_{\rm EN}$ = 0 V
Curren	Consumption					•	
5.2.13	Quiescent current; $I_q = I_1 - I_Q$	I_{q}	_	28	36	μΑ	$I_{\rm Q}$ = 100 μ A; $T_{\rm j}$ < 80 °C
5.2.14	Quiescent current; Disabled	I_{q}	-	1	3	μΑ	$V_{\rm EN}$ = 0 V; $T_{\rm j}$ < 80 °C
Enable	Input EN			•			
5.2.15	High Level Input Voltage	$V_{EN,H}$	3.0	_	_	V	V_{Q} on

Electrical Characteristics (cont'd)

 V_1 = 13.5 V, T_j = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.		
5.2.16	Low Level Input Voltage	$V_{EN,L}$	_	-	0.5	V	$V_{\rm Q}$ = 0.02 V; $I_{\rm Q}$ = 5 mA; $T_{\rm j}$ < 125 °C
5.2.17			_	_	0.3	V	$V_{\rm Q}$ = 0.02 V $I_{\rm Q}$ = 5 mA
5.2.18	High Level Input Current	$I_{EN,H}$	_	3	4	μΑ	V _{EN} = 5 V
Watcho	log Mode Bit 1						
5.2.19	High Level Input Voltage	$V_{\mathrm{WM1,H}}$	4.00	_	_	V	TLE7278-2GV50, TLE7278-2EV50
5.2.20			2.65	_	_	V	TLE7278-2GV33
5.2.21			2.30	_	_	V	TLE7278-2GV26
5.2.22	Low Level Input Voltage	$V_{\mathrm{WM1,L}}$	_	_	0.80	V	_
Watcho	log Mode Bit 2						
5.2.23	High Level Input Voltage	$V_{\mathrm{WM2,H}}$	4.00	_	_	V	TLE7278-2GV50, TLE7278-2EV50
5.2.24			2.65	_	_	V	TLE7278-2GV33
5.2.25			2.30	_	_	V	TLE7278-2GV26
5.2.26	Low Level Input Voltage	$V_{\mathrm{WM2,L}}$	_	_	0.80	V	_
Watcho	log Input WDI						
5.2.27	High Level Input Voltage	$V_{\mathrm{WDI,H}}$	4.0	-	_	V	TLE7278-2GV50, TLE7278-2EV50
5.2.28			2.65	_	_	V	TLE7278-2GV33
5.2.29			2.30	_	_	V	TLE7278-2GV26
5.2.30	Low Level Input Voltage	$V_{\mathrm{WDI,L}}$	_	_	0.80	V	_
5.2.31	High Level Input Current	$I_{WDI,H}$	_	3	4	μΑ	V_{WDI} = 5 V
5.2.32	Low Level Input Current	$I_{WDI,L}$	_	0.5	1	μΑ	$V_{\rm WDI}$ = 0 V; $T_{\rm j}$ < 80 °C
5.2.33	Watchdog sampling time	t_{sam}	0.40	0.50	0.60	ms	fast watchdog timing
			0.80	1.00	1.20	ms	slow watchdog timing
5.2.34	Ignore window time	$t_{\sf OW}$	25.6	32.0	38.4	ms	fast watchdog timing
			51.2	64.0	76.8	ms	slow watchdog timing
5.2.35	Watchdog Period	$t_{\rm WD,p}$	25.6	32	38.4	ms	fast watchdog timing
			51.2	64	76.8	ms	slow watchdog timing
5.2.36	Watchdog deactivation current threshold	I_{Q,WD_off}	0.5	-	-	mA	$I_{\rm Q} \mbox{ decreasing} \\ V_{\rm I} > V_{\rm I, WD_on} > 6.0 \mbox{ V} \\ \mbox{for TLE7278-2GV50}, \\ \mbox{TLE7278-2EV50} \\ V_{\rm I} > V_{\rm I, WD_on} > 4.5 \mbox{ V} \\ \mbox{for TLE7278-2GV33}, \\ \mbox{TLE7278-2GV26} \\ $

Electrical Characteristics (cont'd)

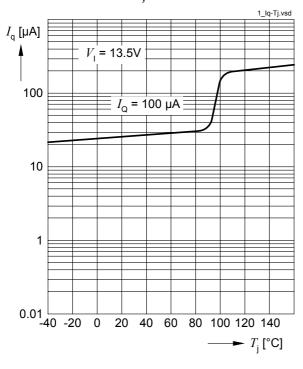
 V_1 = 13.5 V, T_j = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Pos.	Parameter Watchdog activation current threshold	Symbol	Limit Values			Unit	Conditions
			Min.	Тур.	Max.		
5.2.37		I_{Q,WD_on}	-	-	5	mA	$I_{\rm Q}$ increasing $V_{\rm I} > V_{\rm I,WD_on} > 6.0~{\rm V}$ for TLE7278-2GV50, TLE7278-2EV50 $V_{\rm I} > V_{\rm I,WD_on} > 4.5~{\rm V}$ for TLE7278-2GV33, TLE7278-2GV26
Reset (Output RO						
5.2.38	Output Voltage Reset Switching Threshold	V_{RT}	4.50	4.60	4.70	V	TLE7278-2GV50, TLE7278-2EV50 $V_{\rm Q}$ decreasing
5.2.39			3.00	3.07	3.13	V	TLE7278-2GV33 $^{2)}$ $V_{\rm Q}$ decreasing
5.2.40			2.35	2.38	2.45	V	TLE7278-2GV26 $^{2)}$ $V_{\rm Q}$ decreasing
5.2.41	Input Voltage Reset Switching Threshold	V _{RT_VI}	-	3.9	4.0	V	TLE7278-2GV26 ²⁾ TLE7278-2GV33 ²⁾ $V_{\rm Q} > V_{\rm RT},$ $V_{\rm I}$ decreasing
5.2.42	Reset Hysteresis	V_{RH}	_	45	_	mV	TLE7278-2GV26
5.2.43			_	60	_	mV	TLE7278-2GV33
5.2.44			_	90	_	mV	TLE7278-2GV50, TLE7278-2EV50
5.2.45	Maximum Reset Sink Current	I_{RO}	1.75	-	-	mA	TLE7278-2GV50, TLE7278-2EV50 $V_{\rm Q}$ = 4.5 V, $V_{\rm RO}$ = 0.25 V
5.2.46			1.3	_	_	mA	TLE7278-2GV33 $V_{\rm Q}$ = 3.0 V, $V_{\rm RO}$ = 0.25 V
5.2.47			1.0	_	_	mA	TLE7278-2GV26 $V_{\rm Q}$ = 2.35 V, $V_{\rm RO}$ = 0.25 V
5.2.48	Reset output low voltage	V_{ROL}	_	0.15	0.25	V	$V_{\rm Q} \ge 1 \text{ V};$ $I_{\rm RO} < 200 \mu\text{A}$
5.2.49	Reset high voltage	V_{ROH}	4.5	_	_	V	TLE7278-2GV50, TLE7278-2EV50
5.2.50	Reset high leakage current	I_{ROLK}	_	_	1	μΑ	TLE7278-2GV33 TLE7278-2GV26

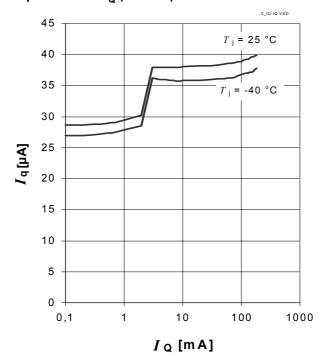
Electrical Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V, $T_{\rm j}$ = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

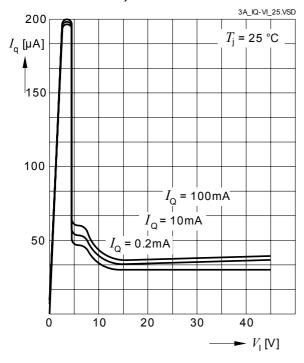
Pos.	Parameter	Symbol		Limit Values			Conditions
			Min.	Тур.	Max.		
5.2.51	Integrated reset pull-up resistor	R _{RO}	10	20	40	kΩ	TLE7278-2GV50, TLE7278-2EV50 internally connected to $V_{\rm Q}$
5.2.52	Power-on Reset delay time	T _{RD}	12.8	16.0	19.2	ms	fast reset timing
			25.6	32.0	38.4	ms	slow reset timing
5.2.53	Reset Reaction Time	T _{RR}	_	4	12	μs	_

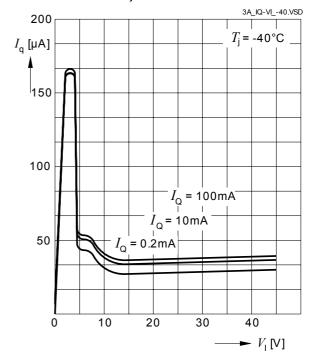

¹⁾ measured when the output voltage has dropped 100 mV from the nominal Value obtained at $V_{\rm I}$ = 13.5 V

²⁾ reset output triggered when output voltage $V_{\rm Q}$ is lower than output voltage reset switching threshold $V_{\rm RT}$ or is also triggered, when input voltage is decreasing to $V_{\rm I}$ < 4.0 V and $V_{\rm Q}$ > $V_{\rm RT}$

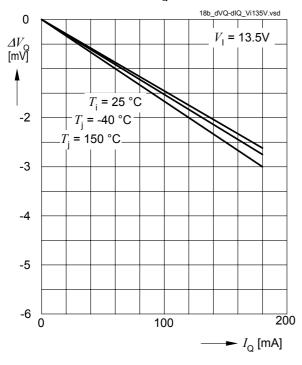


Typical Performance Characteristics

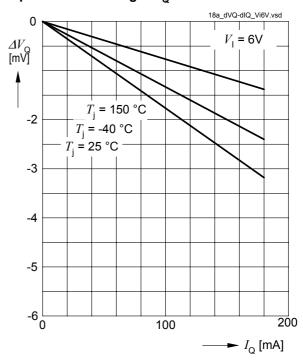

Current Consumption $I_{\rm q}$ versus Junction Temperature $T_{\rm j}$ (EN=ON)

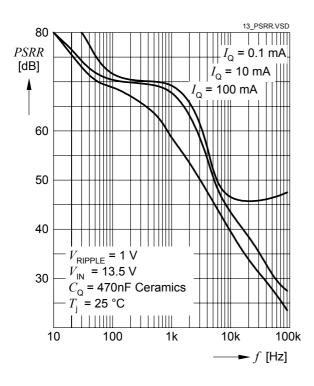

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$ (EN=ON)

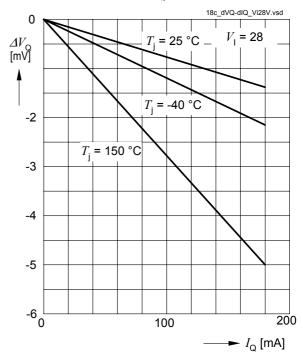
Current Consumption I_q versus Input Voltage V_l at T_i =25°C (EN=ON)



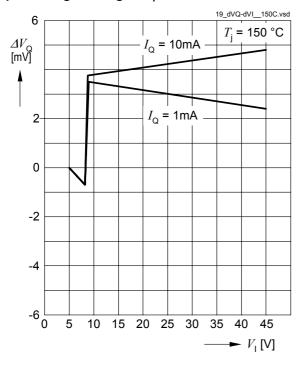
Current Consumption I_q versus Input Voltage V_l at T_l =-40°C (EN=ON)



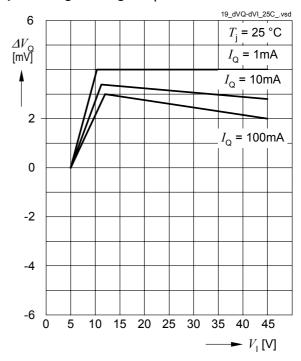

Load Regulation $\mathrm{d}V_\mathrm{Q}$ versus Output Current Change $\mathrm{d}I_\mathrm{Q}$

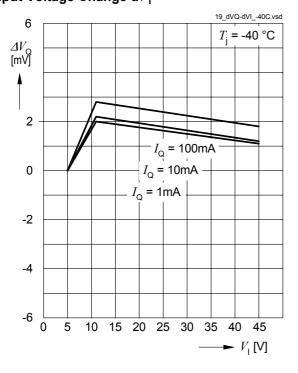

Load Regulation $\mathrm{d}V_\mathrm{Q}$ versus Output Current Change $\mathrm{d}I_\mathrm{Q}$

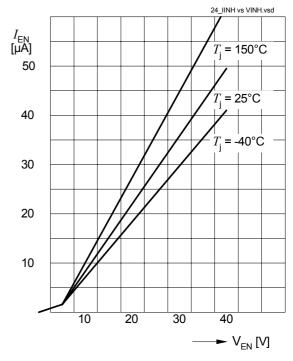
Power Supply Ripple Rejection PSRR



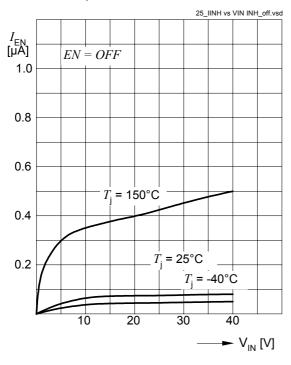
Load Regulation d $V_{ m Q}$ versus Output Current Change d $I_{ m Q}$



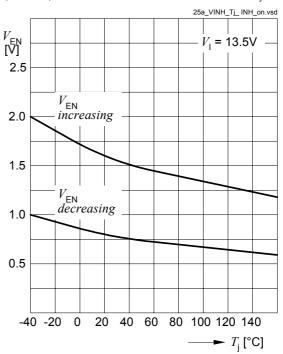

Line Regulation d V_{Q} versus Input Voltage Change d V_{I}

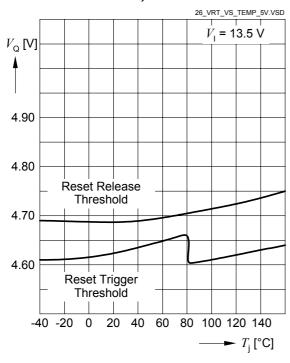

Line Regulation d $V_{\rm Q}$ versus Input Voltage Change d $V_{\rm I}$

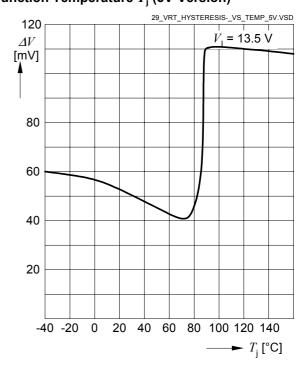
Line Regulation d $V_{\rm Q}$ versus Input Voltage Change d $V_{\rm I}$



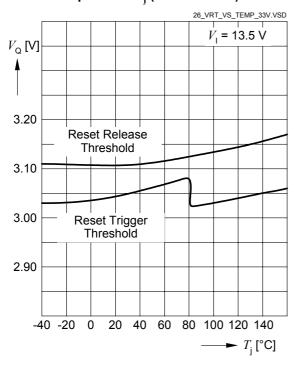
Enable Input Current I_{EN} versus Enable Input Voltage V_{EN}



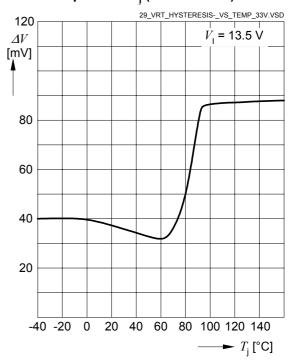

Enable Input Current $I_{\rm EN}$ versus Input Voltage $V_{\rm I}$, EN=Off

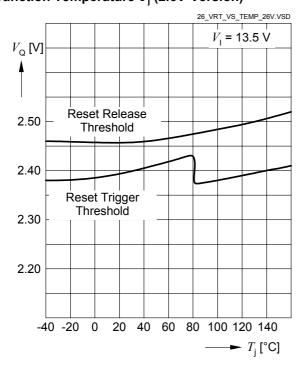

Enable High Level / Low Level Input Voltage $V_{\rm EN,H}$ / $V_{\rm EN,L}$ versus Junction Temperature $T_{\rm i}$

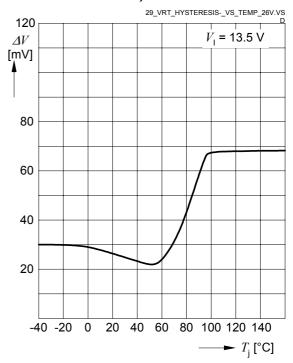
Reset Threshold $V_{\rm RT}$ versus Junction Temperature $T_{\rm i}$ (5V-Version)



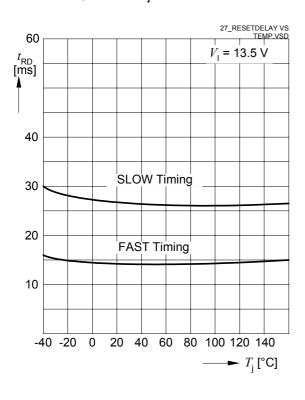
Reset Hysteresis versus Junction Temperature T_i (5V-Version)



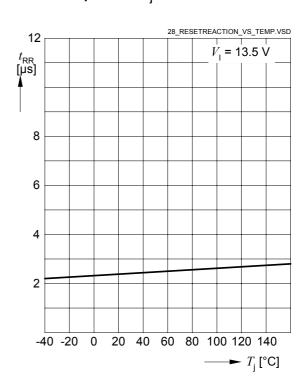

Reset Threshold $V_{\rm RT}$ versus Junction Temperature $T_{\rm i}$ (3.3V-Version)

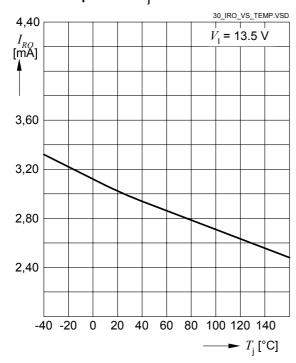

Reset Hysteresis versus Junction Temperature T_i (3.3V-Version)

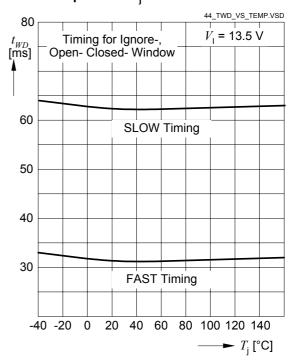
Reset Threshold $V_{ m RT}$ versus Junction Temperature $T_{ m i}$ (2.6V-Version)



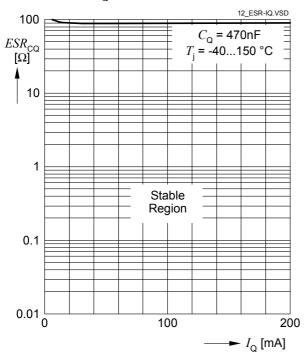
Reset Hysteresis versus Junction Temperature T_i (2.6V-Version)




Typical Performance Characteristics (cont´d) Reset Delay $t_{\rm RD}$ Time versus Junction Temperature $T_{\rm i}$


Reset Reaction Time t_{rr} versus Junction Temperature T_{i}

Reset Output Sink Current $I_{\rm RO}$ versus Junction Temperature $T_{\rm i}$



Watchdog Timing $t_{\rm WD}$ versus Junction Temperature $T_{\rm i}$

Region of Stability $ESR(C_{\rm Q})$ versus Output Current $I_{\rm Q}$

Package Outlines

6 Package Outlines

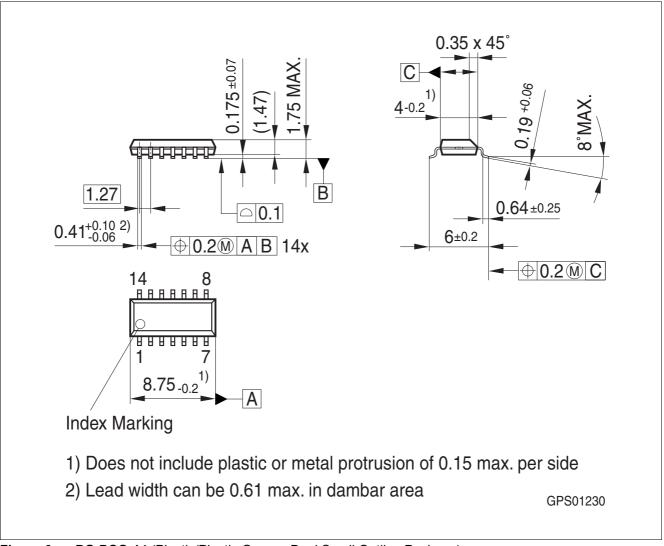


Figure 6 PG-DSO-14 (Plastic/Plastic Green - Dual Small Outline Package)

Package Outlines

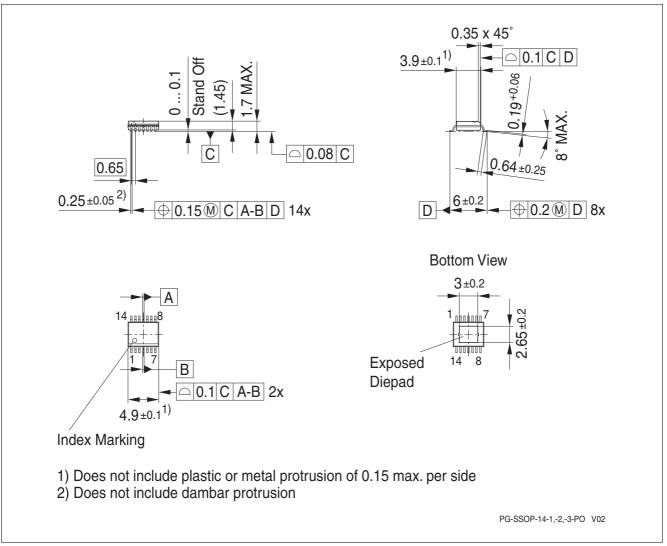


Figure 7 PG-SSOP-14 Exposed Pad

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Dimensions in mm

Revision History

7 Revision History

Revision	Date	Changes
1.2	2009-04-28	2.6V version, 5V version in PG-SSOP-14 package and all related description added:
		In "Features" on Page 2 "or 2.6V" added
		In "Features" on Page 2 package drawing for PG-DSO-14 updated, package drawing for PG-SSOP-14 added
		In "Overview" on Page 2 in table at the bottom types "TLE7278-2GV26" and TLE7278-2EV50" added
		In Table 3.2 "Pin Definitions and Functions (PG-DSO-14)" on Page 4 in description for Pin 1 ", TLE7273-2GV26" added
		In "Pin Assignment (PG-DSO-14)" on Page 4 "(PG-DSO-14)" added; In "Pin Definitions and Functions (PG-DSO-14)" on Page 4 "(PG-DSO-14)" added;
		In Table 3.2 "Pin Definitions and Functions (PG-DSO-14)" on Page 4 in description for pin 8 "; pull down to GND if not needed and turn off the watchdog with WM1 and WM2 pin" added
		"Pin Assignments (PG-SSOP-14 Exposed Pad)" on Page 5 and "Pin Definitions and Functions (PG-SSOP-14 Exposed Pad)" on Page 5 added
		In "Functional Range" on Page 7 Item 4.2.3 added, in Item 4.2.1 ", TLE7278-2EV50" added
		In Table 4.3 "Thermal Resistance" on Page 7 above Item 4.3.1 line with "Package PG-DSO-14" and values for PG-SSOP-14 package added: Item 4.3.6, Item 4.3.7, Item 4.3.8, Item 4.3.9 and Item 4.3.10 added
		In "Power On Reset and Reset Output" on Page 8 "and TLE7278-2EV50" in description added
		In "Electrical Characteristics" on Page 10 all specific items for 2.6V version added: Item 5.2.5, Item 5.2.6, Item 5.2.21, Item 5.2.25, Item 5.2.29, Item 5.2.40, Item 5.2.42 and Item 5.2.47 added; In Item 5.2.36, Item 5.2.37, Item 5.2.41 and Item 5.2.50 conditions for 2.6V version added; In Item 5.2.1, Item 5.2.2, Item 5.2.8, Item 5.2.19, Item 5.2.23, Item 5.2.27, Item 5.2.36, Item 5.2.37, Item 5.2.38, Item 5.2.44, Item 5.2.45, Item 5.2.49 and Item 5.2.51 in conditions ", TLE7278-2EV50" added
		In "Typical Performance Characteristics" on Page 14 Graphs "Reset Threshold VRT versus Junction Temperature Tj (3.3V-Version)" on Page 18, "Reset Hysteresis versus Junction Temperature Tj (3.3V-Version)" on Page 18, "Reset Threshold VRT versus Junction Temperature Tj (2.6V-Version)" on Page 18 and "Reset Hysteresis versus Junction Temperature Tj (2.6V-Version)" on Page 18 added
		In "Package Outlines" on Page 21 Outlines for PG-SSOP-14 package added: Figure 7

Revision History

Revision	Date	Changes
1.1	2008-07-25	3.3V version and all related description added:
		In "Features" on Page 2" 3.3V" added
		In "Overview" on Page 2 in table at the bottom type "TLE7273-2GV33" added
		In "Pin Definitions and Functions (PG-DSO-14)" on Page 4 in description for Pin 1 "TLE7273-2GV33: open drain output;" added
		In "Functional Range" on Page 7 Item 4.2.2 added
		In "Power On Reset and Reset Output" on Page 8 description for dimensioning external pull-up resistor at RO added;
		In "Electrical Characteristics" on Page 10 all specific Items for 3.3V version added: Item 5.2.3, Item 5.2.4, Item 5.2.20, Item 5.2.24, Item 5.2.28, Item 5.2.39, Item 5.2.41, Item 5.2.43, Item 5.2.46 and Item 5.2.50 added; In Item 5.2.36 and Item 5.2.37 Conditions for 3.3V version added;
1.0	2008-04-10	final version data sheet

Edition 2009-04-28

Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.