International **ICR** Rectifier **RADIATION HARDENED** LOGIC LEVEL POWER MOSFET THRU-HOLE (TO-39)

Product Summary

Part Number	Radiation Level	RDS(on)	ID
IRHLF770Z4	100K Rads (Si)	0.6Ω	1.6A*
IRHLF730Z4	300K Rads (Si)	0.6Ω	1.6A*

International Rectifier's R7[™] Logic Level Power Mosfets provide simple solution to interfacing CMOS and TTL control circuits to power devices in space and other radiation environments. The threshold voltage remains within accptable operating limits over the full operating temperature and post radiation. This is achieved while maintaining single event gate rupture and single event burnout immunity.

These devices are used in applications such as current boost low signal source in PWM, voltage comparator and operational amplifiers.

Absolute Maximum Ratings

2N7621T2 IRHLF770Z4 60V, N-CHANNEL Rechnology

PD-94695F

Features:

- 5V CMOS and TTL Compatible
- Fast Switching
- Single Event Effect (SEE) Hardened
- Low Total Gate Charge
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Light Weight
- Complimentary P-Channel Available -IRHLF7970Z4

Pre-Irradiation

	Parameter		Units
$I_D @ V_{GS} = 4.5V, T_C = 25^{\circ}C$	Continuous Drain Current	1.6*	
ID @ VGS = 4.5V, TC = 100°C	Continuous Drain Current	1.0*	А
IDM	Pulsed Drain Current ①	6.4	
P _D @ T _C = 25°C	Max. Power Dissipation	5.0	W
	Linear Derating Factor	0.04	W/°C
VGS	Gate-to-Source Voltage	±10	V
EAS	Single Pulse Avalanche Energy 2	6.9	mJ
lar	Avalanche Current ①	1.6	A
EAR	Repetitive Avalanche Energy ①	0.5	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.5	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063in/1.6mm from case for 10s)	
	Weight	0.98 (Typical)	g

* Derated to match the complimentary P-Channel logic level power MOSFET - IRHLF7970Z4

For footnotes refer to the last page

IRHLF770Z4, 2N7621T2

Pre-Irradiation

	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	60	—	—	V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	_	0.08	_	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source On-State Resistance	—	—	0.60	Ω	VGS = 4.5V, ID = 1.0A ④
VGS(th)	Gate Threshold Voltage	1.0	—	2.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
ΔVGS(th)/ΔTJ	Gate Threshold Voltage Coefficient	—	-3.5	—	mV/°C	
9fs	Forward Transconductance	1.1	—	—	S	V _{DS} = 10V, I _{DS} = 1.0A ④
IDSS	Zero Gate Voltage Drain Current	_	—	1.0		VDS = 48V ,VGS = 0V
		_	—	10	μΑ	V _{DS} = 48V,
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	—	100	nA	VGS = 10V
IGSS	Gate-to-Source Leakage Reverse	_	—	-100		V _{GS} = -10V
Qq	Total Gate Charge	_	—	2.6		VGS = 4.5V, ID = 1.6A
Qgs	Gate-to-Source Charge	_	—	0.8	nC	VDS = 30V
Q _{gd}	Gate-to-Drain ('Miller') Charge	_	—	1.5	Ī	
td(on)	Turn-On Delay Time	_	_	6.5		VDD = 30V, ID = 1.6A,
tr	Rise Time	_	—	14	ns	$V_{GS} = 4.5 V$, $R_{G} = 24 \Omega$
td(off)	Turn-Off Delay Time	_	—	30	115	
tf	Fall Time	_	—	13		
Ls + LD	Total Inductance		7.0		nH	Measured from Drain lead (6mm/0.25in from package)to Source lead (6mm/0.25in from package)with Source wire interanally bonded from Source pin to Drain pad
Ciss	Input Capacitance	_	152	—		$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance	_	39	—	pF	f = 1.0MHz
Crss	Reverse Transfer Capacitance	_	1.6	—	Γ	
Rg	Gate Resistance		—	17	Ω	f = 5.0MHz, open drain

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter		Min	Тур	Max	Units	Test Conditions
IS	Continuous Source Current (Body Diode)		_	_	1.6*	А	
ISM	Pulse Source Current (Body Diode) ①		—	—	6.4		
VSD	Diode Forward Voltage		—	—	1.2	V	$T_j = 25^{\circ}C, I_S = 1.6A, V_{GS} = 0V $
t _{rr}	Reverse Recovery Time		—	_	78	ns	Tj = 25°C, IF = 1.6A, di/dt \leq 100A/ μ s
QRR	Reverse Recovery Charge		—	—	150	nC	$V_{DD} \leq 25V @$
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.					

* Derated to match the complimentary P-Channel logic level power MOSFET - IRHLF7970Z4

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	—	—	25	°C/W	

Note: Corresponding Spice and Saber models are available on International Rectifier Web site.

For footnotes refer to the last page

2

Radiation Characteristics

IRHLF770Z4, 2N7621T2

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation © 6

	Parameter	Up to 300	K Rads(Si)1	Units	Test Conditions
		Min	Мах		
BV _{DSS}	Drain-to-Source Breakdown Voltage	60	_	V	$V_{GS} = 0V, I_D = 250\mu A$
VGS(th)	Gate Threshold Voltage	1.0	2.0		$V_{GS} = V_{DS}, I_D = 250 \mu A$
IGSS	Gate-to-Source Leakage Forward	_	100	nA	V _{GS} = 10V
IGSS	Gate-to-Source Leakage Reverse	_	-100		V _{GS} = -10V
IDSS	Zero Gate Voltage Drain Current	_	1.0	μA	V _{DS} = 48V, V _{GS} = 0V
R _{DS(on)}	Static Drain-to-Source ④				
	On-State Resistance (TO-39)	—	0.6	Ω	V _{GS} = 4.5V, I _D = 1.0A
V _{SD}	Diode Forward Voltage ④	_	1.2	V	$V_{GS} = 0V, I_{D} = 1.6A$

1. Part numbers IRHLF770Z4, IRHLF730Z4

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

LET	Energy	Range	VDS (V)						
(MeV/(mg/cm ²))	(MeV)	(µm)	@VGS= 0V	@VGS= -2V	@VGS= -4V	@VGS= -5V	@VGS= -6V	@VGS= -7V	
38 ± 5%	300 ± 7.5%	38 ± 7.5%	60	60	60	60	60	35	
62 ± 5%	355 ± 7.5%	33 ± 7.5%	60	60	60	60	30	-	
85 ± 5%	380 ± 7.5%	29 ± 7.5%	60	60	60	40	-	-	

Table 2. Typical Single Event Effect Safe Operating Area

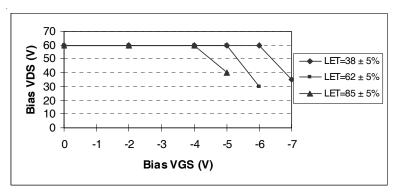



Fig a. Typical Single Event Effect, Safe Operating Area

For footnotes refer to the last page

IRHLF770Z4, 2N7621T2

Pre-Irradiation

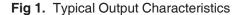


Fig 3. Typical Transfer Characteristics

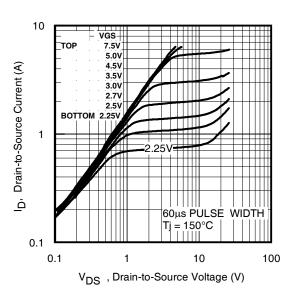


Fig 2. Typical Output Characteristics

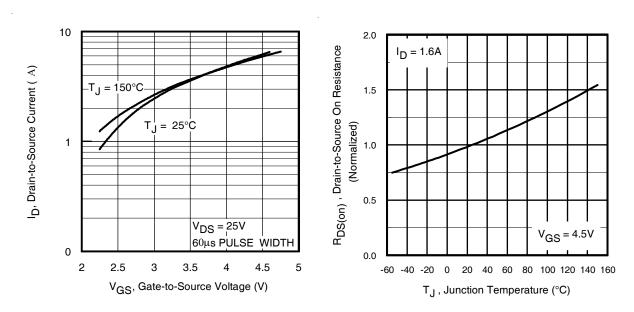


Fig 4. Normalized On-Resistance Vs. Temperature

www.irf.com

4

IRHLF770Z4, 2N7621T2

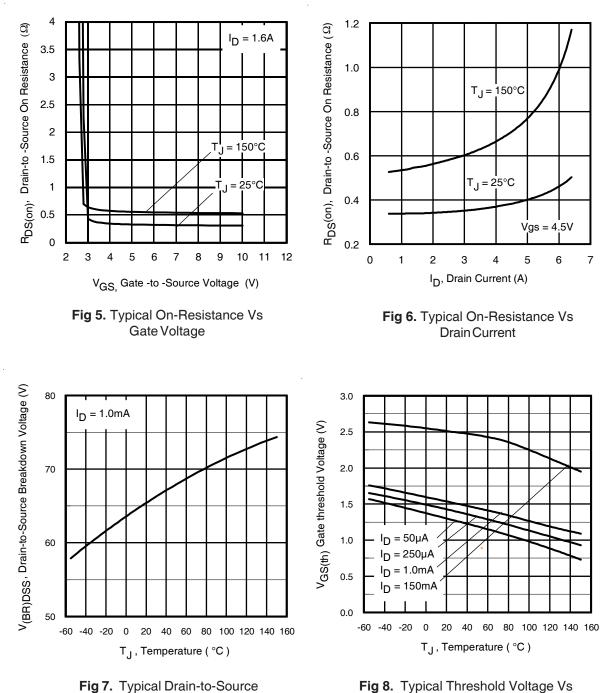
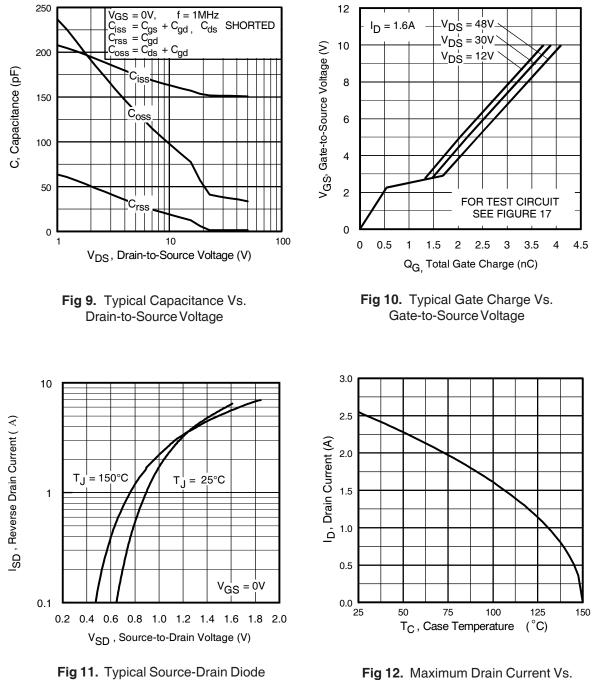



Fig 8. Typical Threshold Voltage Vs Temperature

www.irf.com

Breakdown Voltage Vs Temperature

5

Forward Voltage

www.irf.com

Case Temperature

IRHLF770Z4, 2N7621T2

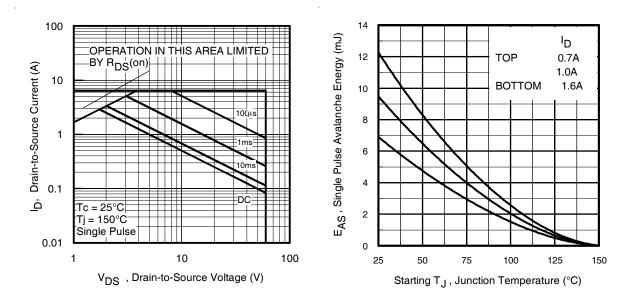


Fig 13. Maximum Safe Operating Area

Fig 14. Maximum Avalanche Energy Vs. Drain Current

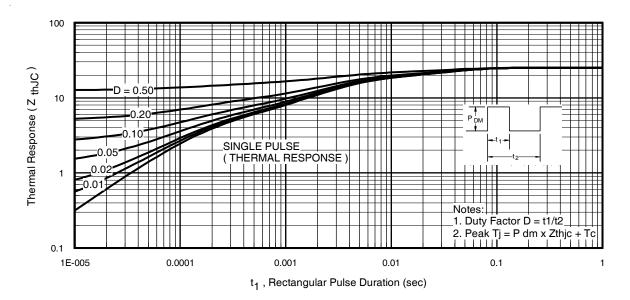


Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRHLF770Z4, 2N7621T2

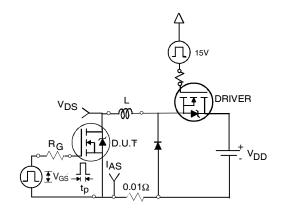


Fig 16a. Unclamped Inductive Test Circuit

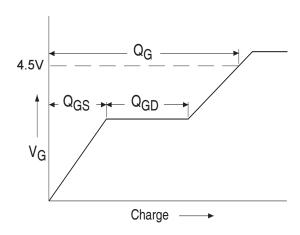


Fig 17a. Basic Gate Charge Waveform

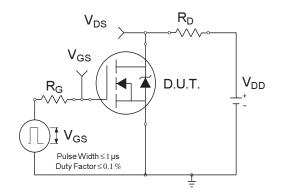


Fig 18a. Switching Time Test Circuit

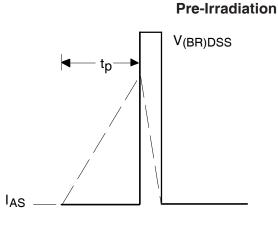
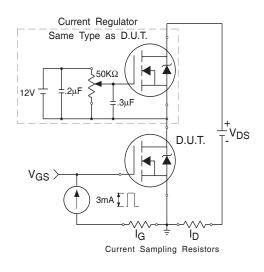
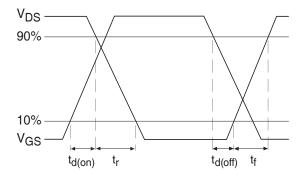
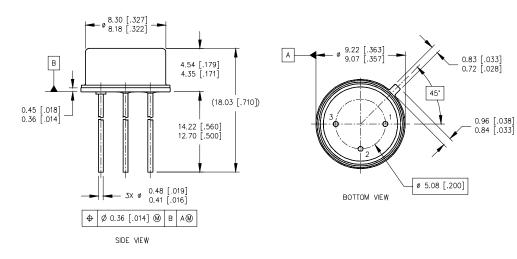



Fig 16b. Unclamped Inductive Waveforms




Fig 18b. Switching Time Waveforms

IRHLF770Z4, 2N7621T2

Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- 2 VDD = 25V, starting TJ = 25°C, L= 5.4 mH Peak IL = 1.6A, VGS = 10V
- 3 $ISD \leq$ 1.6A, di/dt \leq 92A/µs, $V_{DD} \leq$ 60V, $T_J \leq$ 150°C

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- Total Dose Irradiation with VGS Bias. 10 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- \circledast Total Dose Irradiation with Vps Bias. 48 volt Vps applied and Vgs = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — TO-205AF (Modified TO-39)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME 14.5M-1994.
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-205AF (TO-39).

LEGEND 1 - SOURCE 2 - GATE 3 - DRAIN

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 09/2010