
HFB25HJ20

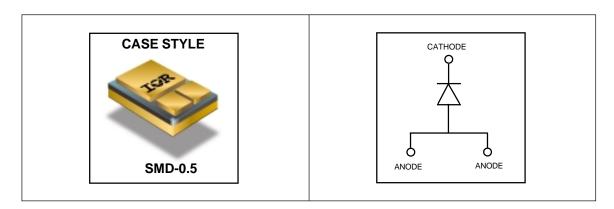
FRED

Ultrafast, Soft Recovery Diode

Features

- · Reduced RFI and EMI
- · Reduced Snubbing
- Extensive Characterization of Recovery Parameters
- Hermetic
- Surface Mount

Description


These Ultrafast, soft recovery diodes are optimized to reduce losses and EMI/RFI in high frequency power conditioning systems. An extensive characterization of the recovery behavior for different values of current, temperature and di/dt simplifies the calculations of losses in the operating conditions. The softness of the recovery eliminates the need for a snubber in most applications. These devices are ideally suited for power converters, motors drives and other applications where switching losses are significant portion of the total losses.

Absolute Maximum Ratings

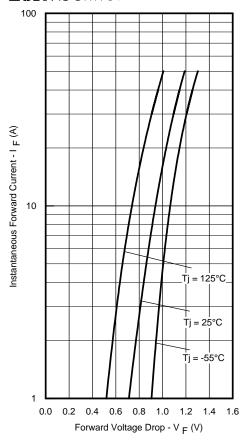
	Parameter	Max.	Units
V_R	Cathode to Anode Voltage	200	V
I _{F(AV)}	Continuous Forward Current, ⊕ T _C = 106°C	25	Δ
I _{FSM}	Single Pulse Forward Current, ② T _C = 25°C	150	
P _D @ T _C = 25°C	Maximum Power Dissipation	70	W
T _J , T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	°C

Note: ① D.C. = 50% rect. wave

② 1/2 sine wave, 60 Hz , P.W. = 8.33 ms

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
V _{BR}	Cathode Anode Breakdown Voltage	200	_	_	V	$I_R = 100 \mu A$
V _F	Forward Voltage	_	_	1.18		I _F = 25A, T _J =-55°C
	See Fig. 1	_	_	0.94		I _F = 10A, T _J = 25°C
		_	_	1.07	V	I _F = 25A, T _J = 25°C
		_	_	1.19		I _F = 50A, T _J = 25°C
		_	_	0.88		I _F = 25A, T _J =125°C
I _R	Reverse Leakage Current	_	_	10	μA	$V_R = V_R$ Rated
	See Fig. 2	_	_	250	μA	V _R = V _R Rated, T _J = 125°C
Ст	Junction Capacitance, See Fig. 3	_	_	78	pF	V _R = 200V
Ls	Series Inductance	_	4.8	_	nΗ	Measured from center of cathod
						pad to center of anode pad


Dynamic Recovery Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions		
t _{rr}	Reverse Recovery Time	_	—	35	ns	$I_F = 1.0A, V_R = 30V, di_f/dt = 200A/\mu s$		
t _{rr1}	Reverse Recovery Time	_	28	_	ns	T _J = 25°C	See Fig.	
t _{rr2}		_	43	l		$T_J = 125$ °C	5	$I_{F} = 25A$
I _{RRM1}	Peak Recovery Current	_	3.9	_	A	$T_J = 25^{\circ}C$	See Fig.	
I _{RRM2}		_	6.1			$T_J = 125$ °C	6	$V_{R} = 160V$
Q _{rr1}	Reverse Recovery Charge	_	61	-	nC	$T_J = 25^{\circ}C$	See Fig.	
Q _{rr2}		_	146		''	$T_J = 125$ °C	7	$di_f/dt = 200A/\mu s$
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current	_	820		A/us	T _J = 25°C	See Fig.	
di _{(rec)M} /dt2	During t _b	-	1560	_	Α,μ3	T _J = 125°C	8	

Thermal - Mechanical Characteristics

	Parameter	Тур.	Max.	Units
R _{thJC}	Junction-to-Case	_	1.76	°C/W
Wt	Weight	1.0	_	g

International TOR Rectifier

Fig. 1 - Maximum Forward Voltage Drop Vs. Instantaneous Forward Current

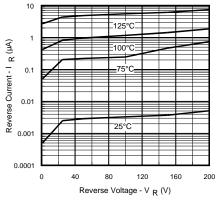
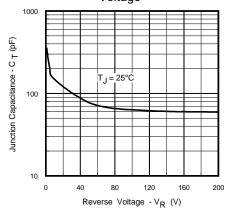



Fig. 2 - Typical Reverse Current Vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage

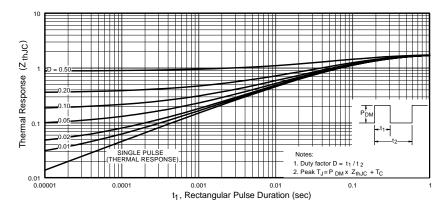


Fig. 4 - Maximum Thermal Impedance Z_{thjc} Characteristics

HFB25HJ20

International Rectifier

1000

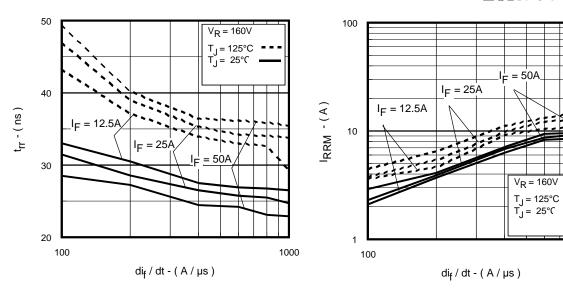


Fig. 5 - Typical Reverse Recovery Vs. dif/dt,

Fig. 6 - Typical Recovery Current Vs. di_f/dt,

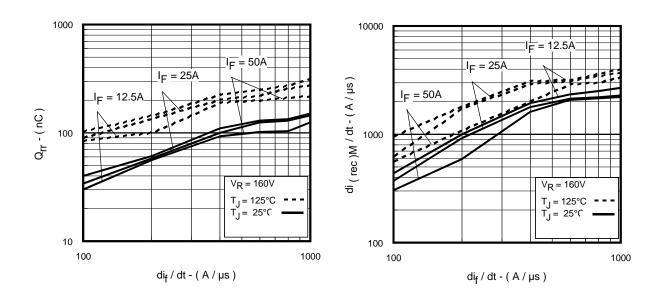


Fig. 7 - Typical Stored Charge Vs. di_f/dt

Fig. 8 - Typical di_{(rec)M}/dt Vs. di_f/dt

HFB25HJ20

International TOR Rectifier

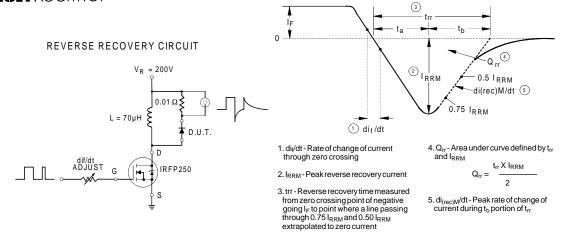
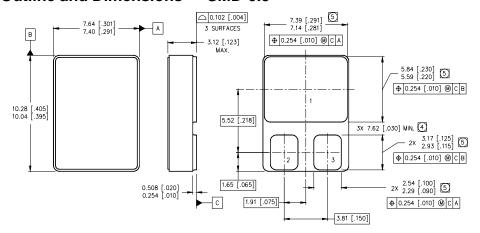



Fig. 9 - Reverse Recovery Parameter Test Circuit

Fig. 10 - Reverse Recovery Waveform and Definitions

Case Outline and Dimensions — SMD-0.5

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- (4) DIMENSION INCLUDES METALLIZATION FLASH.
- DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

PAD ASSIGNMENTS

- 1 = CATHODE
- 2 = COMMON ANODE
- 3 = COMMON ANODE

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 07/01