International TOR Rectifier RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-254AA)

IRHM57160 100V, N-CHANNEL Representation Technology

Product Summary

Part Number	Radiation Level	RDS(on)	ΙD
IRHM57160	100K Rads (Si)	0.018Ω	35A*
IRHM53160	300K Rads (Si)	0.018Ω	35A*
IRHM54160	600K Rads (Si)	0.018Ω	35A*
IRHM58160	1000K Rads (Si)	0.019Ω	35A*

International Rectifier's R5[™] technology provides high performance power MOSFETs for space applications. These devices have been characterized for Single Event Effects (SEE) with useful performance up to an LET of 80 (MeV/(mg/cm²)). The combination of low R_{DS(on)} and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Features:

- Single Event Effect (SEE) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Ratings
- Dynamic dv/dt Ratings
- Simple Drive Requirements
- Ease of Paralleling
- Hermatically Sealed
- Electically IsolatedCeramic Eyelets
- Light Weight

Absolute Maximum Ratings

Pre-Irradiation

	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	35*	
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	35*	Α
IDM	Pulsed Drain Current ①	140	
P _D @ T _C = 25°C	Max. Power Dissipation	250	W
	Linear Derating Factor	2.0	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	500	mJ
IAR	Avalanche Current ①	35	Α
EAR	Repetitive Avalanche Energy ①	25	mJ
dv/dt	Peak Diode Recovery dv/dt 3	3.4	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Lead Temperature	300 (0.063 in. /1.6 mm from case for 10s)	
	Weight	9.3 (Typical)	g

^{*} Current is limited by package For footnotes refer to the last page

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Electrical	Characteristics @ Tj = 25°C (L	<u> Inless</u>	Other	wise S	pecifi	ied)
	Parameter	Min	Тур	Max	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	_	_	V	VGS = 0V, ID = 1.0mA
ΔBVDSS/ΔTJ	Temperature Coefficient of Breakdown Voltage	_	0.013	_	V/°C	Reference to 25°C, ID = 1.0mA
RDS(on)	Static Drain-to-Source On-State Resistance	_	_	0.018	Ω	VGS = 12V, ID = 35A ④
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}, I_{D} = 1.0 \text{mA}$
9fs	Forward Transconductance	42	_	_	S	V _{DS} > 15V, I _{DS} = 35A 4
IDSS	Zero Gate Voltage Drain Current		_	10	μА	V _{DS} = 80V ,V _{GS} =0V
		_	_	25		V _{DS} = 80V,
						$V_{GS} = 0V$, $T_{J} = 125$ °C
IGSS	Gate-to-Source Leakage Forward		_	100	nA	V _G S = 20V
IGSS	Gate-to-Source Leakage Reverse	_	_	-100	'''	V _G S = -20V
Qg	Total Gate Charge		_	160		V _{GS} =12V, I _D = 35A
Qgs	Gate-to-Source Charge		_	45	nC	$V_{DS} = 50V$
Qgd	Gate-to-Drain ('Miller') Charge	_	_	65		
td(on)	Turn-On Delay Time	_	_	35		$V_{DD} = 50V, I_{D} = 35A$
tr	Rise Time	_	_	75	ns	V_{GS} =12V, R_{G} = 2.35 Ω
[†] d(off)	Turn-Off Delay Time		_	75		
tf	Fall Time	_	_	35		
LS+LD	Total Inductance	_	6.8	_	nH	Measured from Drain lead (6mm/0.25in. fr. package) to Source lead (6mm/0.25in. fr. package) with Source wires internally bonded from Source Pin to Drain Pad
C _{iss}	Input Capacitance	ı	5620	_		$V_{GS} = 0V$, $V_{DS} = 25V$
Coss	Output Capacitance	_	1583	_	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance		50	_		

Source-Drain Diode Ratings and Characteristics

	Parameter			Тур	Max	Units	Test Conditions
Is	Continuous Source Current (Body Diode)			_	35*	Α	
ISM	Pulse Source Current (Body Diode) ①			_	140		
VSD	Diode Forward Voltage		_	_	1.2	V	$T_j = 25$ °C, $I_S = 35A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		_	_	270	ns	Tj = 25°C, IF = 35A, di/dt ≤100A/μs
QRR	Reverse Recovery Charge		_	_	1.9	μС	V _{DD} ≤ 25V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

^{*} Current is limited by package

Thermal Resistance

	Parameter	Min	Тур	Max	Units	Test Conditions
RthJC	Junction-to-Case	_	_	0.50		
RthCS	Case-to-Sink	_	0.21		°C/W	
R _{th} JA	Junction-to-Ambient	_	_	48		Typical socket mount

Note: Corresponding Spice and Saber models are available on International Rectifier Website.

For footnotes refer to the last page

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation 56

	Parameter	Up to 600K Rads(Si)1		1000K Rads (Si) ²		Units	Test Conditions
		Min	Max	Min	Max		
BV _{DSS}	Drain-to-Source Breakdown Voltage	100	_	100	_	V	V _{GS} = 0V, I _D = 1.0mA
V _{GS(th)}	Gate Threshold Voltage	2.0	4.0	1.5	4.0		$V_{GS} = V_{DS}$, $I_D = 1.0 \text{mA}$
I _{GSS}	Gate-to-Source Leakage Forward	_	100	_	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Leakage Reverse	_	-100	_	-100		V _{GS} = -20 V
IDSS	Zero Gate Voltage Drain Current	_	10	_	25	μΑ	V _{DS} = 80V, V _{GS} =0V
R _{DS(on)}	Static Drain-to-Source 4	_	0.013	_	0.014	Ω	Vgs = 12V, I _D =35A
	On-State Resistance (TO-3)						
R _{DS(on)}	Static Drain-to-Source 4	_	0.018	_	0.019	Ω	Vgs = 12V, I _D =35A
, ,	On-State Resistance (TO-254)						
V _{SD}	Diode Forward Voltage 4	_	1.2	_	1.2	V	V _{GS} = 0V, I _S = 35A

^{1.} Part numbers IRHM57160, IRHM53160 and IRHM54160

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area

Ion	LET	Energy	Range	V _{DS} (V)						
	MeV/(mg/cm ²))	(MeV)	(µm)	@V _{GS} =0V	@V _{GS} =-5V	@V _{GS} =-10V	@V _{GS} =-15V	@V _{GS} =-20V		
Br	36.7	309	39.5	100	100	100	100	100		
1	59.8	341	32.5	100	100	100	35	25		
Au	82.3	350	28.4	100	100	80	25	_		

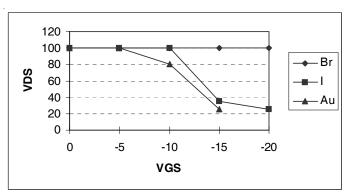


Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

^{2.} Part number IRHM58160

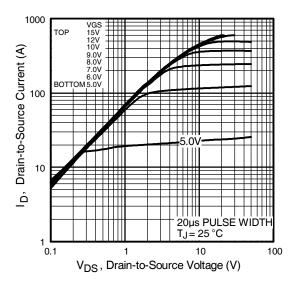


Fig 1. Typical Output Characteristics

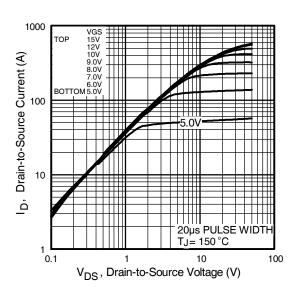


Fig 2. Typical Output Characteristics

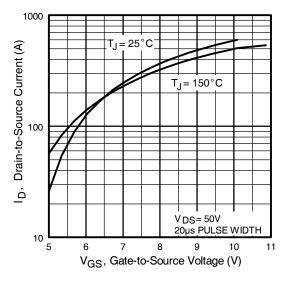
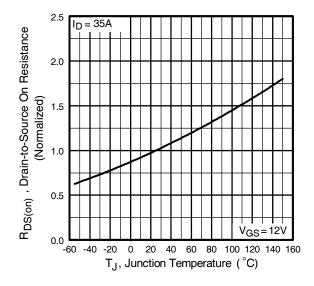
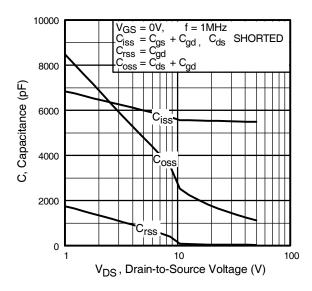




Fig 3. Typical Transfer Characteristics

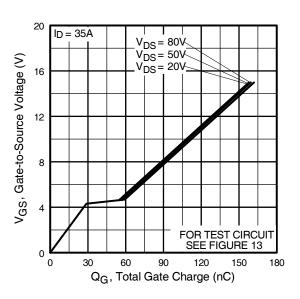


Fig 4. Normalized On-Resistance Vs. Temperature

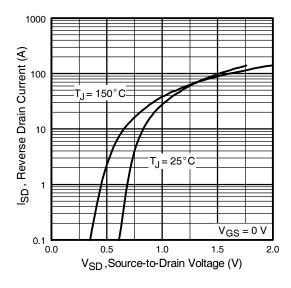

Pre-Irradiation IRHM57160

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

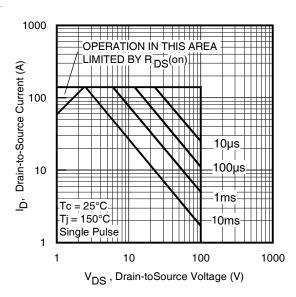
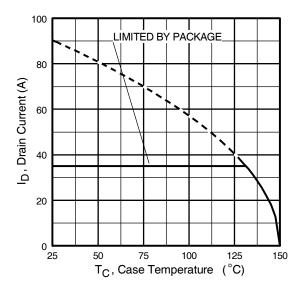



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

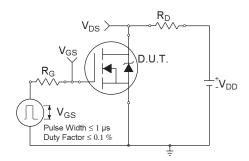


Fig 10a. Switching Time Test Circuit

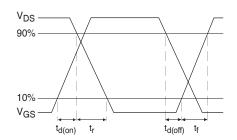


Fig 10b. Switching Time Waveforms

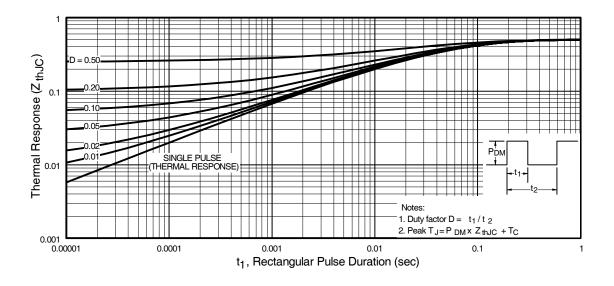


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Pre-Irradiation IRHM57160

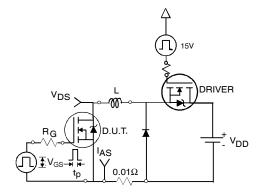


Fig 12a. Unclamped Inductive Test Circuit

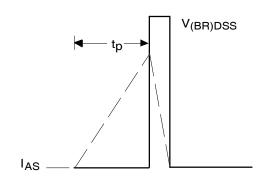


Fig 12b. Unclamped Inductive Waveforms

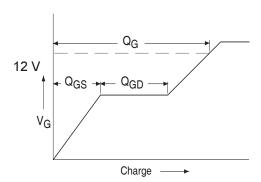


Fig 13a. Basic Gate Charge Waveform

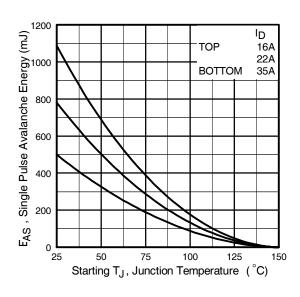
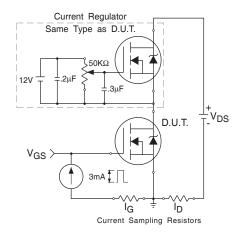
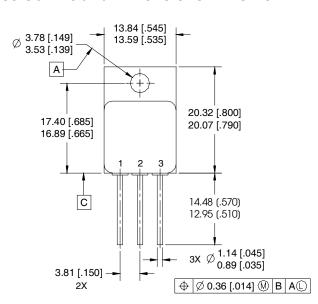
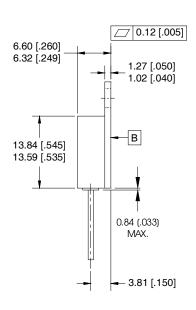


Fig 12c. Maximum Avalanche Energy Vs. Drain Current




Fig 13b. Gate Charge Test Circuit


Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- $^{\circ}$ V_{DD} = 50V, starting T_J = 25°C, L= 0.82 mH Peak I_L = 35A, V_{GS} = 12V
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

- Total Dose Irradiation with V_{GS} Bias.
 12 volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- ® Total Dose Irradiation with V_{DS} Bias.
 80 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — TO-254AA

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. CONTROLLING DIMENSION: INCH.
- 4. CONFORMS TO JEDEC OUTLINE TO-254AA.

PIN ASSIGNMENTS

- 1 = DRAIN
- 2 = SOURCE
- 3 = GATE

CAUTION

BERYLLIA WARNING PER MIL-PRF-19500

Package containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxide packages shall not be placed in acids that will produce fumes containing beryllium.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER: 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 01/2011