Data Sheet No.PD60159-K

IPS5451/IPS5451S

FULLY PROTECTED HIGH SIDE POWER MOSFET SWITCH

Features

- Over temperature protection (with auto-restart)
- Over current shutdown

International

ICR Rectifier

- · Active clamp
- E.S.D protection
- Status feedback
- Open load detection
- Logic ground isolated from power ground

Description

The IPS5451/IPS5451S are fully protected five terminal high side switch with built in short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The over-current protection latches off the device if the output current exceeds Ishutdown. It can be reset by turning the input pin low. The over-temperature protection turns off the high side switches if the junction temperature exceeds Tshutdown. It will automatically restart after the junction has cooled 7°C below Tshutdown. A diagnostic pin is provided for status feedback of over-current, over-temperature and open load detection. The double level shifter circuitry allows large offsets between the logic ground and the load ground.

Product Summary

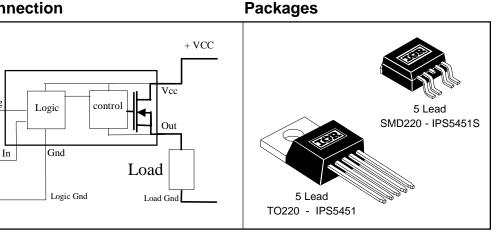
R _{ds(on)}	$25m\Omega$ (max)
V _{clamp}	50V
I _{shutdown}	35A
lopen load	1A

Truth Table

Op. Conditions	In	Out	Dg
Normal	Н	Н	Н
Normal	L	L	Н
Open load	Н	Н	L
Open load	L	Х	Н
Over current	Н	L (latched)	L
Over current	L	L	Н
Over-temperature	Н	L (cycling)	L (cycling)
Over-temperature	L	L	Н

Typical Connection

Dg


+ 5v 15K Status

feedback

Rdg

Rin

Logic signal

www.irf.com

Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to GROUND lead. (T_{Ambient} = 25° C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units	Test Conditions
Vout	Maximum output voltage	V _{CC} -45	V _{cc} +0.3		
Voffset	Maximum logic ground to load ground offset	V _{CC} -45	V _{cc} +0.3	V	
V _{in}	Maximum Input voltage	-0.3	5.5		
lin, max	Maximum IN current	-5	10	mA	
V _{dg}	Maximum diagnostic output voltage	-0.3	5.5	V	
ldg, max	Maximum diagnostic output current	-1	10	mA	
Isd cont.	Diode max. continuous current (1)				
	(rth=62°C/W) IPS5451	_	2.8	А	
	(rth=80°C/W) IPS5451S	—	2.2		
Isd pulsed	Diode max. pulsed current (1)	—	45		
ESD1	Electrostatic discharge voltage (Human Body)	—	4	1.) /	C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	—	0.5	kV	C=200pF, R=0Ω, L=10μH
Pd	Maximum power dissipation ⁽¹⁾				
	(rth=62°C/W) IPS5451	_	2	W	
	(rth=80°C/W) IPS5451S	_	1.56		
Tj max.	Max. storage & operating junction temp.	-40	+150	00	
Tlead	Lead temperature (soldering 10 seconds)	_	300	°C	
Vcc max.	Maximum Vcc voltage	—	45	V	

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} 1	Thermal resistance junction to case	_	2	_		TO 222
R _{th} 2	Thermal resistance junction to ambient	—	55		°C/W	TO-220
Rth 1	Thermal resistance with standard footprint	—	60			D ² PAK (SMD220)
R _{th} 2	Thermal resistance with 1" square footprint	—	35			
R _{th} 3	Thermal resistance junction to case	—	5			

(1) Limited by junction temperature (pulsed current limited also by internal wiring)

2

International **IGR** Rectifier

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
V _{cc}	Continuous V _{CC} voltage	5.5	18	
VIH	High level input voltage	4	5.5	V
VIL 1	Low level input voltage	-0.3	0.9	
lout	Continuous output current			
	(TAmbient = 85°C, Tj = 125°C, R _{th} = 62°C/W) IPS5451	—	4	
	(TAmbient = 85°C, Tj = 125°C, Rth = 80°C/W) IPS5451S	—	3.5	А
lout	Continuous output current			
Tc=85°C	(TCase = 85°C, IN = 5V, Tj = 125°C, R _{th} = 5°C/W)	—	14	
R _{in}	Recommended resistor in series with IN pin	4	6	kΩ
R _{dg}	Recommended resistor in series with DG pin	10	20	r77

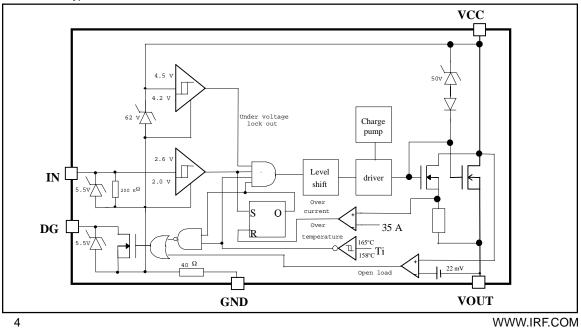
Static Electrical Characteristics

(T_j = 25° C, V_{CC} = 14V unless otherwise specified.)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on) @Tj=25°C	ON state resistance T _j = 25°C	—	19	25		V _{in} = 5V, I _{out} = 14A
R _{ds(on)} (V _{cc} =6V)	ON state resistance @ $V_{CC} = 6V$	—	22	30	mΩ	V _{in} = 5V, I _{out} = 7A
Rds(on) @Tj=150°C	ON state resistance Tj = 150°C	—	32			$V_{in} = 5V, I_{out} = 14A$
V _{cc} oper.	Functional operating range	5.5	_	18		
V clamp 1	V _{cc} to OUT clamp voltage 1	45	49		v	Id = 10mA (see Fig.1 & 2)
V clamp 2	V _{CC} to OUT clamp voltage 2	—	50	60	v	ld = Ishutdown (see Fig.1 & 2)
Vf	Body diode forward voltage	—	0.9	1.2] [$I_{d} = 14A, V_{in} = 0V$
lout	Output leakage current	—	10	50		$V_{out} = 0V, Tj = 25^{\circ}C$
leakage					μA	
Icc off	Supply current when OFF	—	10	50		$V_{in} = 0V, V_{out} = 0V$
I _{cc on}	Supply current when ON	—	3.5	10	mA	Vin = 5V
Icc ac	Ripple current when ON (AC RMS)	—	20	_	μΑ	V _{in} = 5V
Vdgl	Low level diagnostic output voltage	—	0.1	0.4	V	l _{dg} = 1.6 mA
ldg leakage	Diagnostic output leakage current	—	1.5	10	μA	$V_{dg} = 4.5V$
Vih	IN high threshold voltage	—	2.7	3.4		
Vil	IN low threshold voltage	1	2.0	_		
lin, on	On state IN positive current		30	80	μΑ	V _{in} = 4V
V _{ccuv+}	Vcc UVLO positive going threshold	—	4.7	5.5		
V _{ccuv} -	Vcc UVLO negative going threshold	3.0	4.4	_	V	
In _{hyst} .	Input hysteresis	0.2	0.6	1.5		

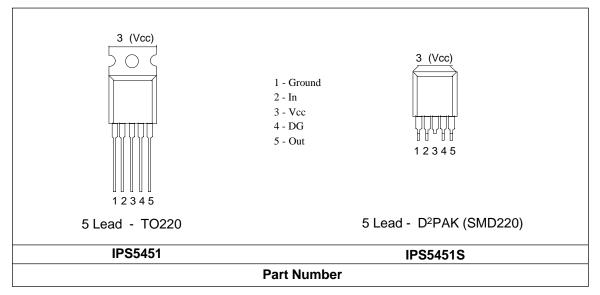
International **TOR** Rectifier

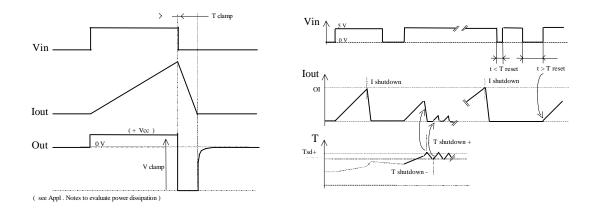
Switching Electrical Characteristics V_{CC} = 14V, Resistive Load = 1 Ω , T_j = 25°C, (unless otherwise specified).

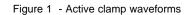

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time	—	5	20		
T _{r1}	Rise time to $V_{OUT} = V_{CC} - 5V$	_	4	20	μs	Cas figure 2
T _{r2}	Rise time from the end of Tr1					See figure 3
	to $V_{OUT} = 90\%$ of V_{CC}	—	65	150		
dV/dt (on)	Turn ON dV/dt	—	3	6	V/µs	
Eon	Turn ON energy	—	3	—	mJ	
Tdoff	Turn-off delay time	—	65	150	μs	See figure 4
Tf	Fall time to V_{out} = 10% of V_{CC}	_	8	20	μ	
dV/dt (off)	Turn OFF dV/dt	_	5	10	V/µs	
Eoff	Turn OFF energy	_	0.75	_	mJ	

Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{sd+}	Over-temp. positive going threshold	_	165	—	°C	See fig. 2
T _{sd-}	Over-temp. negative going threshold	—	158	_	°C	See fig. 2
I _{sd}	Over-current threshold	22	35	50	A	See fig. 2
lopen load	Open load detection threshold	0.3	1	2	A	
Treset	Minimum time to reset protections	—	50	_	μs	V _{in} = 0V
Tdg	Blanking time before considering Dg	_	7	100	μs	Part turned on with Vin =5V

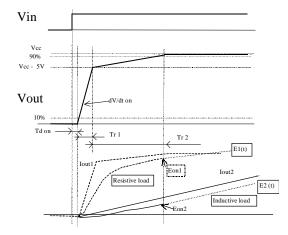

Functional Block Diagram

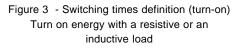

All values are typical

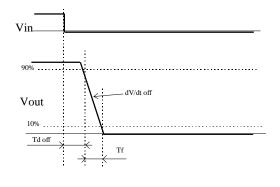


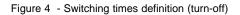
International

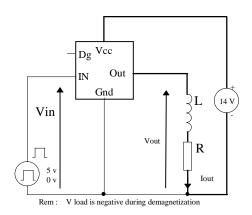
Lead Assignments

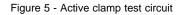









International



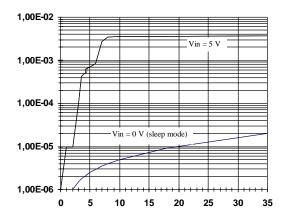


Figure 6 - Icc (mA) Vs Vcc (V)

Figure 7 - Iin (μA) $\,$ Vs $\,$ Tj (°C)

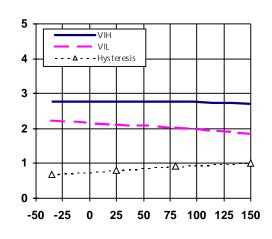
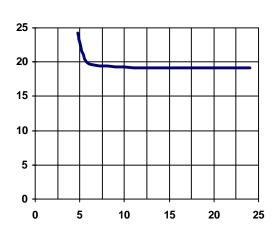
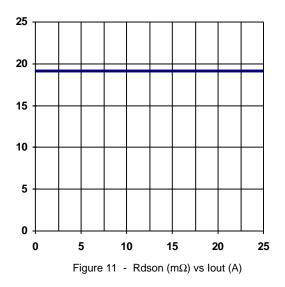
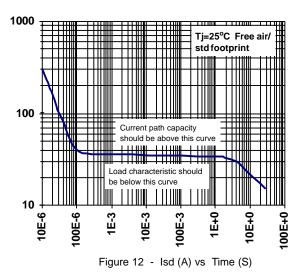


Figure 8 - VIH, VIL threshold (V) Vs Tj (°C)


Figure 9 - Rdson (m Ω) vs Vcc (V)

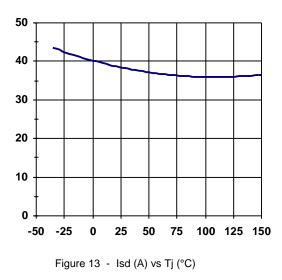


Figure 10 - Rdson (mΩ) vs Tj (°C)

International

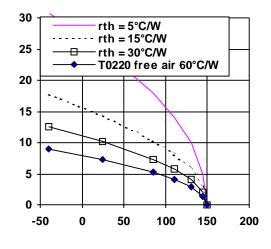


Figure 14 - Max. Cont. Ids (A) Vs Amb. Temperature (°C)

International **ISPR** Rectifier

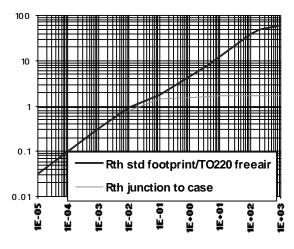


Figure 16 - Transient Rth (°C/W) Vs Time (s)

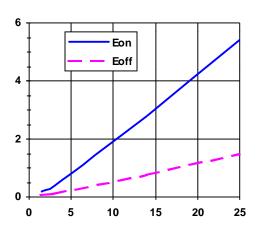
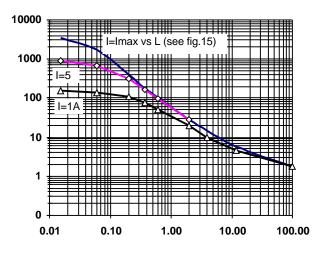
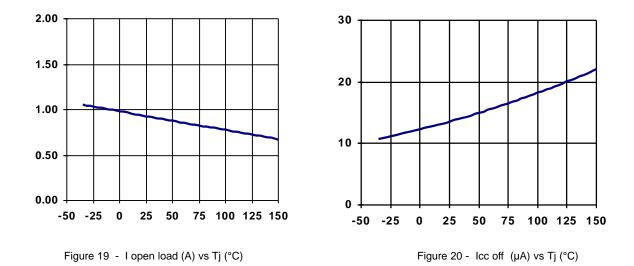
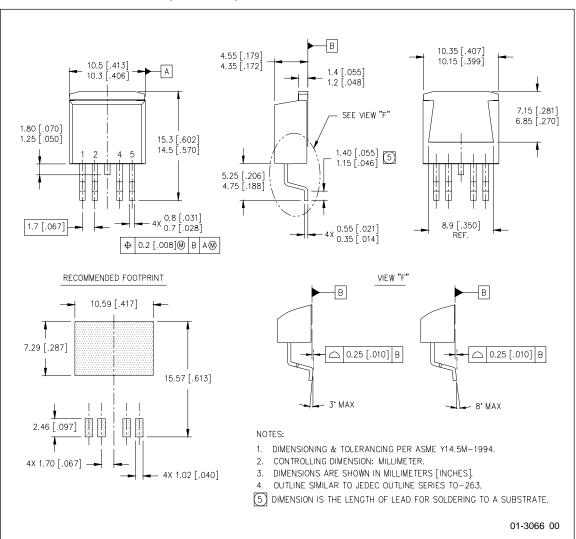
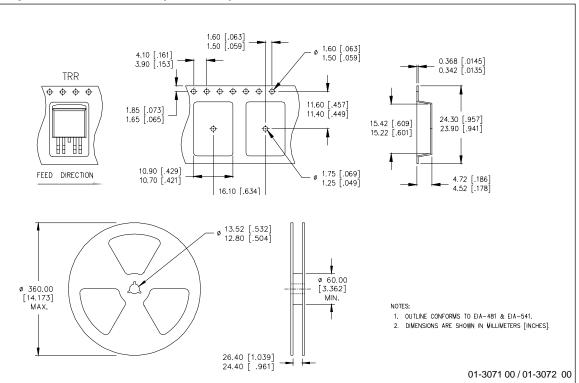


Figure 17 - Eon, Eoff (mJ) vs lout (A)


Figure 18 - Eon @ Vcc=14V (mJ) vs Inductance (mH)

International **TOR** Rectifier



Case Outline - TO220 (5 lead)

^{10.54 [.415]} -B A) - Ø 3.96 [.156] 3.53 [.139] 9.91 [.390] 4.82 [.190] 4.19 [.165] 2.94 [.116] 1.39 [.055] 0.89 [.035] 2.54 [.100] 1 6.60 [.260] 6.00 [.236] 1 15.87 [.625] 14.48 [.570] 4 NOTES: C 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: INCH. 3. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE SIMILAR TO JEDEC OUTLINE SERIES TS-001. 14.09 [.555] 13.59 [.535] 5X 1.01 [.040] 0.51 [.020] 5X 0.63 [.025] 0.31 [.012] 1,70 [.067] ⊕ 0.25 [.010]@ B AC C 2.92 [.115] 2.16 [.085] 4X IRGB 01-3042 01

Case Outline - D²PAK (SMD220) - 5 Lead

Tape & Reel - D²PAK (SMD220) - 5 Lead

International ICR Rectifier IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd., Whyteleafe, Surrey CR3 0BL, United Kingdom Tel: ++ 44 (0) 20 8645 8000 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon Hong Kong Tel: (852) 2803-7380 Data and specifications subject to change without notice. 8/7/2000 Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>