

High Power RF LDMOS Field Effect Transistor 10 W, 1.0 – 2.0 GHz

Description

The PTF180101M is an unmatched 10-watt GOLDMOS® FET intended for class AB base station applications in the 1 to 2 GHz band. This LDMOS device offers excellent gain, efficiency and linearity performance in a small footprint.

PTF180101M Package PG-RFP-10

Features

- Typical EDGE performance
 - Average output power = 4.0 W
 - Gain = 17 dB
 - Efficiency = 31%
 - EVM = 1.3 %
- Typical CW performance
 - Output Power at P-1dB = 10 W
 - Gain = 16 dB
 - Efficiency = 50%
- Integrated ESD protection: Human Body Model Class 1 (minimum)
- · Excellent thermal stability
- · Low HCI drift
- Capable of handling 10:1 VSWR @ 28 V, 10 W (CW) output power
- Pb-free and RoHS compliant

RF Characteristics

Two-Tone Measurements (not subject to production test—verified by design/characterization in Infineon test fixture) $V_{DD} = 28 \text{ V}$, $I_{DQ} = 180 \text{ mA}$, $P_{OUT} = 10 \text{ W PEP}$, f = 1990 MHz, tone spacing = 1 MHz

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	G _{ps}	16.5	_	_	dB
Drain Efficiency	η_{D}	35	_	_	%
Intermodulation Distortion	IMD	_	_	-28	dBc

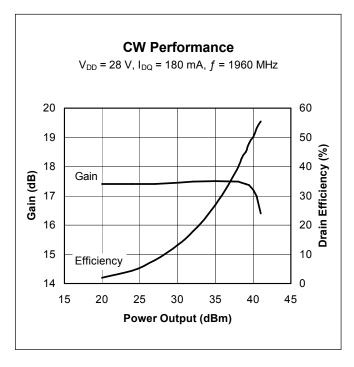
All published data at T_{CASE} = 25°C unless otherwise indicated

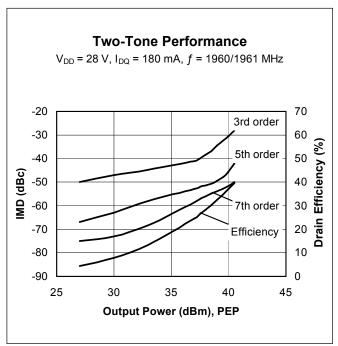
ESD: Electrostatic discharge sensitive device—observe handling precautions!

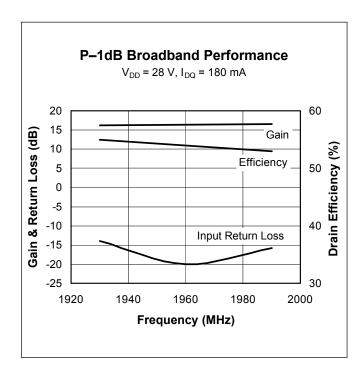
DC Characteristics

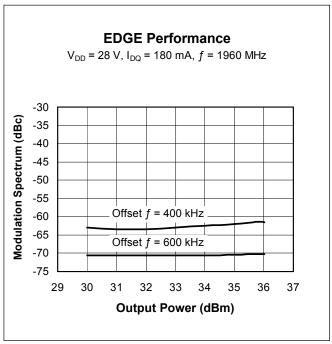
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{DS} = 10 \mu\text{A}$	V _{(BR)DSS}	65	_	_	V
Drain Leakage Current	V _{DS} = 28 V, V _{GS} = 0 V	I _{DSS}	_	_	1.0	μΑ
On-State Resistance	V _{GS} = 10 V, V _{DS} = 0.1 A	R _{DS(on)}	_	0.83	_	Ω
Operating Gate Voltage	V _{DS} = 28 V, I _{DQ} = 180 mA	V _{GS}	2.5	3.2	4.0	V
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_	_	1.0	μΑ

Maximum Ratings

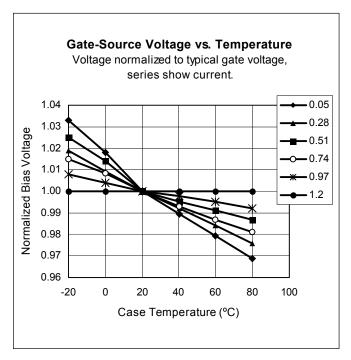

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	65	V
Gate-Source Voltage	V _{GS}	-0.5 to +12	V
Junction Temperature	TJ	150	°C
Total Device Dissipation	P _D	18.8	W
Above 25°C derate by		0.15	W/°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 10 W DC)	$R_{ heta JC}$	6.5	°C/W

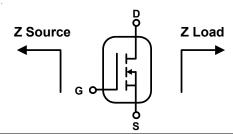

Ordering Information

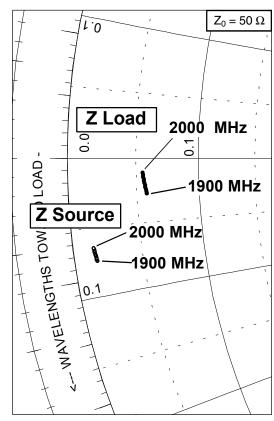

Туре	Package Outline	Package Description	Marking
PTF180101M	PG-RFP-10	Molded plastic, SMD	0181



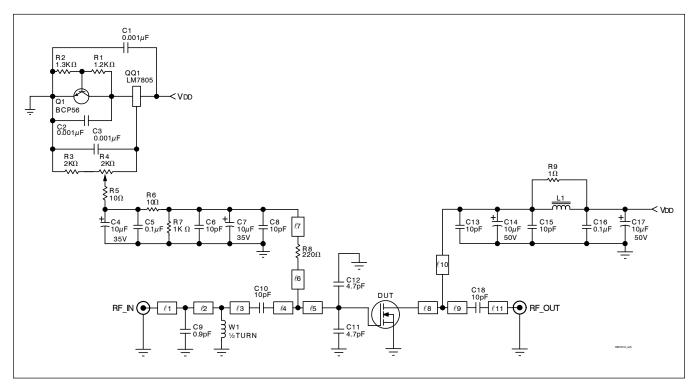
Typical Performance (data taken in production test fixture)






Typical Performance (cont.)

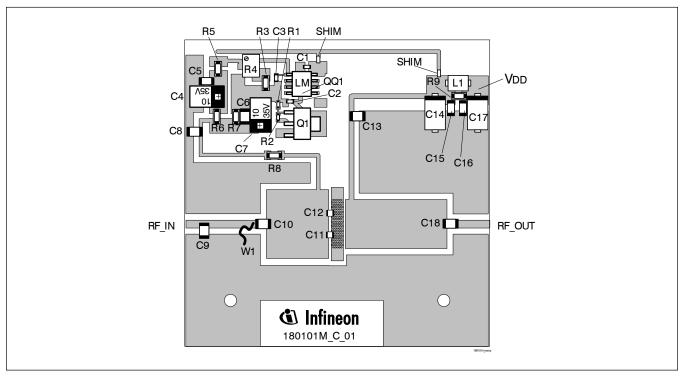
Broadband Circuit Impedance



Frequency	Z Source W		Z Loa	ad W
MHz	R	jХ	R	jX
1900	0.80	-3.71	2.89	-1.38
1910	0.79	-3.66	2.88	-1.30
1920	0.79	-3.61	2.87	-1.21
1930	0.78	-3.56	2.85	-1.13
1940	0.77	-3.51	2.84	-1.05
1950	0.77	-3.47	2.82	-0.97
1960	0.76	-3.42	2.81	-0.89
1970	0.75	-3.37	2.80	-0.81
1980	0.75	-3.33	2.78	-0.73
1990	0.74	-3.28	2.77	-0.65
2000	0.74	-3.24	2.76	-0.57

Reference Circuit

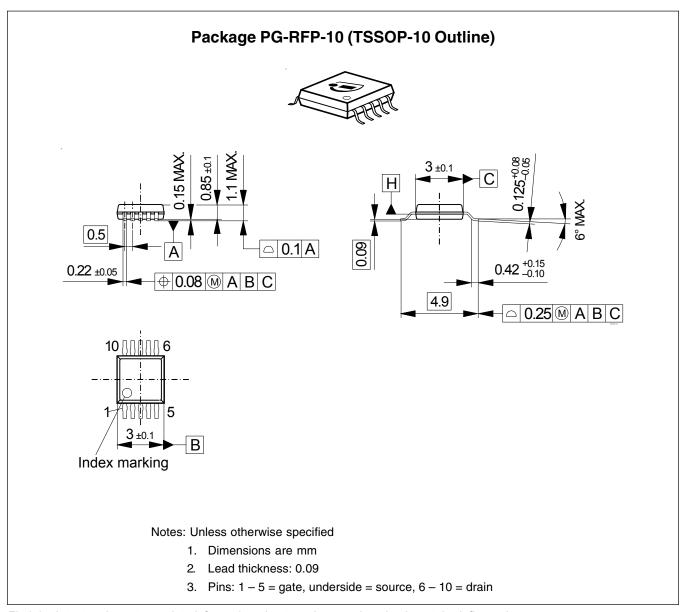
Reference circuit schematic for f = 1990 MHz


Circuit Assembly Information				
DUT	PTF180101M	LDMOS Transistor		
PCB	0.76 mm [.030"] thick, $\varepsilon_r = 4.5$	Rogers RO4320	2 oz. copper	
Microstrip	Electrical Characteristics at 1990 MHz ¹	Dimensions: L x W (mm)	Dimensions: L x W (in.)	
ℓ 1	0.059 λ, 50.0 Ω	5.69 x 1.60	0.224 x 0.063	
ℓ 2	0.093 λ, 50.0 Ω	8.48 x 1.60	0.334 x 0.063	
ℓ 3	0.016 λ, 50.0 Ω	1.09 x 1.60	0.043 x 0.063	
ℓ 4	0.129 λ, 9.6 Ω	10.77 x 14.22	0.424 x 0.560	
0 =	2.222.2.2.2	0.40 44.00	0.004 0.500	

ν. Ο	0.010 %, 30.0 \$2	1.03 X 1.00	0.0 1 0 x 0.000
ℓ 4	0.129 λ, 9.6 Ω	10.77 x 14.22	0.424 x 0.560
ℓ 5	0.026 λ, 9.6 Ω	2.13 x 14.22	0.084 x 0.560
<i>ℓ</i> 6	0.153 λ, 78.0 Ω	14.48 x 0.71	0.570 x 0.028
ℓ 7	0.194 λ, 78.0 Ω	18.39 x 0.71	0.724 x 0.028
ℓ8	0.014 λ, 12.9 Ω	1.27 x 10.16	0.050 x 0.400
ℓ 9	0.236 λ, 12.9 Ω	19.91 x 10.16	0.784 x 0.400
<i>ℓ</i> 10	0.187 λ, 66.0 Ω	17.40 x 0.99	0.685 x 0.039
ℓ 11	0.077 λ, 50.0 Ω	6.99 x 1.60	0.275 x 0.063

¹Electrical characteristics are rounded.

Reference Circuit (cont.)


Reference circuit assembly diagram (not to scale)*

Component	Description	Suggested Manufacturer	P/N or Comment
C1, C2, C3	Capacitor, 0.001 μF	Digi-Key	PCC1772CT-ND
C4, C7	Tantalum capacitor, 10 μF, 35 V	Digi-Key	PCS6106TR-ND
C5, C16	Capacitor, 0.1µF	Digi-Key	PCC104BCT-ND
C6, C8, C10, C13, C15, C18	Ceramic capacitor, 10 pF	ATC	100B 100
C9	Ceramic capacitor, 0.9 pF	ATC	100B 0R9
C11, C12	Ceramic capacitor, 4.7pF	ATC	100B 4R7
C14, C17	Tantalum capacitor, 10 μF, 50 V	Digi-Key	TPSE106K050R0400
L1	Ferrite, 4mm	Elna Magnetics	BDS3/3/4.6-4S2
Q1	Transistor	Infineon Technologies	BCP56
QQ1	Voltage regulator	National Semiconductor	LM7805
R1	Chip Resistor 1.2 k-ohms	Digi-Key	P1.2KGCT-ND
R2	Chip Resistor 1.3 k-ohms	Digi-Key	P1.3KGCT-ND
R3	Chip Resistor 2 k-ohms	Digi-Key	P2KECT-ND
R4	Potentiometer 2 k-ohms	Digi-Key	3224W-202ETR-ND
R5, R6	Chip Resistor 10 ohms	Digi-Key	P10ECT-ND
R7	Chip Resistor 1 k-ohms	Digi-Key	P1KECT-ND
R8	Chip Resistor 220 ohms	Digi-Key	P221ECT-ND
W1	Wire 0.250"	N/A	AUG22, SOLID

^{*}Gerber Files for this circuit available on request

Package Outline Specifications

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/products

PTF180101M

Revision I	History: 2009-02-18	Data Sheet
Previous v	version: 2005-12-06, Data Sheet	
Page	Subjects (major changes since last revision)	
all	Remove Preliminary designation	
6	Fixed typing error	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

highpowerRF@infineon.com

To request other information, contact us at: +1 877 465 3667 (1-877-GOLDMOS) USA or +1 408 776 0600 International

Edition 2009-02-18
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.