SPS04N60C3

Cool MOS ${ }^{\text {TM }}$ Power Transistor

Feature

- New revolutionary high voltage technology
- Ultra low gate charge
- Periodic avalanche rated
- Extreme dv/dt rated
- High peak current capability
- Improved transconductance

$V_{\mathrm{DS}} @ T_{\mathrm{jmax}}$	650	V
$R_{\mathrm{DS}(\mathrm{on})}$	0.95	Ω
I_{D}	4.5	A

- Pb-free lead plating; RoHS compliant
- Qualified according to JEDEC ${ }^{0)}$ for target applications

Type	Package	Marking
SPS04N60C3	PG-TO251-3-11	04N60C3

Maximum Ratings

Parameter	Symbol	Value	Unit
Continuous drain current	$I_{\text {D }}$		A
$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$		4.5	
$T_{\text {C }}=100^{\circ} \mathrm{C}$		2.8	
Pulsed drain current, t_{p} limited by $T_{\text {imax }}$	$I_{\text {D puls }}$	13.5	
Avalanche energy, single pulse $I_{\mathrm{D}}=3.4 \mathrm{~A}, V_{\mathrm{DD}}=50 \mathrm{~V}$	$E_{\text {AS }}$	130	mJ
Avalanche energy, repetitive t_{AR} limited by $T_{\text {jmax }}{ }^{1}$ $I_{\mathrm{D}}=4.5 \mathrm{~A}, V_{\mathrm{DD}}=50 \mathrm{~V}$	$E_{\text {AR }}$	0.4	
Avalanche current, repetitive $t_{\text {AR }}$ limited by $T_{\text {jmax }}$	$I_{\text {AR }}$	4.5	A
Gate source voltage static	$V_{\text {GS }}$	± 20	V
Gate source voltage AC ($\mathrm{f}>1 \mathrm{~Hz}$)	$V_{G S}$	± 30	
Power dissipation, $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {tot }}$	50	W
Operating and storage temperature	$T_{\mathrm{i}}, T_{\text {stg }}$	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Reverse diode dv/dt 5)	dv/dt	15	V / ns

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain Source voltage slope	$\mathrm{d} v / \mathrm{d} t$	50	$\mathrm{~V} / \mathrm{ns}$
$V_{\mathrm{DS}}=480 \mathrm{~V}, I_{\mathrm{D}}=4.5 \mathrm{~A}, T_{\mathrm{j}}=125^{\circ} \mathrm{C}$			

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Thermal resistance, junction - case	$R_{\text {thJC }}$	-	-	2.5	K/W
Thermal resistance, junction - ambient, leaded	$R_{\text {thJA }}$	-	-	75	
SMD version, device on PCB: @ min. footprint @ $6 \mathrm{~cm}^{2}$ cooling area ${ }^{2)}$	$R_{\text {thJA }}$	-	-	$\begin{aligned} & 75 \\ & 50 \end{aligned}$	
Soldering temperature, wavesoldering 1.6 mm (0.063 in.) from case for 10s	$T_{\text {sold }}$	-	-	260	${ }^{\circ} \mathrm{C}$

Electrical Characteristics, at $T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Drain-source breakdown voltage	$V_{\text {(BR) }}$ DSS	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{D}}=0.25 \mathrm{~mA}$	600	-	-	V
Drain-Source avalanche breakdown voltage	$V_{\text {(BR) } \mathrm{DS}}$	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{D}}=4.5 \mathrm{~A}$	-	700	-	
Gate threshold voltage	$V_{\mathrm{GS}}(\mathrm{th})$	$I_{\text {d }}=200 \mu \mathrm{~A}, v_{\mathrm{GS}}=v_{\text {DS }}$	2.1	3	3.9	
Zero gate voltage drain current	$I_{\text {DSS }}$	$\begin{aligned} & V_{\mathrm{DS}}=600 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C}, \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		0.5	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\mu \mathrm{A}$
Gate-source leakage current	$I_{\text {GSS }}$	$V_{\mathrm{GS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	-	-	100	nA
Drain-source on-state resistance	$R_{\text {DS(on) }}$	$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=2.8 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 0.85 \\ 2.3 \end{gathered}$	0.95	Ω
Gate input resistance	R_{G}	$f=1 \mathrm{MHz}$, open Drain	-	0.95	-	

Electrical Characteristics, at $T_{\mathrm{i}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Transconductance	$g_{\text {fs }}$	$V_{\mathrm{DS}} \geq 2^{*} / \mathrm{D}^{*} R_{\mathrm{DS}}($ on $) m a x$, $I_{\mathrm{D}}=2.8 \mathrm{~A}$	-	4.4	-	S
Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=25 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	490	-	pF
Output capacitance	$C_{\text {oss }}$		-	160	-	
Reverse transfer capacitance	$C_{\text {rss }}$		-	15	-	
Effective output capacitance, 3) energy related	$C_{\text {O(er) }}$	$\begin{aligned} & v_{\mathrm{GS}}=0 \mathrm{~V}, \\ & v_{\mathrm{DS}}=0 \mathrm{~V} \text { to } 480 \mathrm{~V} \end{aligned}$	-	20	-	pF
Effective output capacitance, 4) time related	$C_{\text {o(tr) }}$		-	35	-	
Turn-on delay time	$t_{\text {d(on) }}$	$\begin{aligned} & v_{\mathrm{DD}}=380 \mathrm{~V}, v_{\mathrm{GS}}=0 / 10 \mathrm{~V}, \\ & l_{\mathrm{D}}=4.5 \mathrm{~A}, R_{\mathrm{G}}=18 \Omega \end{aligned}$	-	6	-	ns
Rise time	t_{r}		-	2.5	-	
Turn-off delay time	$t_{\text {d(off) }}$		-	58.5	80	
Fall time	t_{f}		-	9.5	14	

Gate Charge Characteristics

Gate to source charge	Q_{gs}	$V_{\mathrm{DD}}=480 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=4.5 \mathrm{~A}$	-	2.2	-	nc
Gate to drain charge	Q_{gd}		-	8.8	-	
Gate charge total	Q_{g}	$\begin{aligned} & \hline V_{\mathrm{DD}}=480 \mathrm{~V}, l_{\mathrm{D}}=4.5 \mathrm{~A}, \\ & V_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \\ & \hline \end{aligned}$	-	19	25	
Gate plateau voltage	$V_{\text {(plateau) }}$	$V_{D D}=480 \mathrm{~V}, I_{D}=4.5 \mathrm{~A}$	-	5	-	V

[^0]Electrical Characteristics, at $T_{\mathrm{i}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Inverse diode continuous forward current	I_{S}	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	4.5	A
Inverse diode direct current, pulsed	$I_{\text {SM }}$		-	-	13.5	
Inverse diode forward voltage	$V_{\text {SD }}$	$V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=I_{S}$	-	1	1.2	V
Reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & V_{\mathrm{R}}=480 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}}, \\ & \mathrm{~d} i_{\mathrm{F}} / \mathrm{d}=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	300	500	ns
Reverse recovery charge	$Q_{\text {rr }}$		-	2.6	-	$\mu \mathrm{C}$
Peak reverse recovery current	$I_{\text {rrm }}$		-	18	-	A
Peak rate of fall of reverse recovery current	$d i_{\mathrm{rr}} / d t$		-	-	900	A/ $/ \mathrm{s}$

Typical Transient Thermal Characteristics

Symbol	Value	Unit	Symbol	Value	Unit
	typ.			typ.	
Thermal resistance			Thermal capacitance		
$R_{\text {th1 }}$	0.039	K/W	$C_{\text {th1 }}$	0.00007347	Ws/K
$R_{\text {th2 }}$	0.074		$\mathrm{C}_{\text {th2 }}$	0.0002831	
$R_{\text {th3 }}$	0.132		$C_{\text {th3 }}$	0.0004062	
$R_{\text {th4 }}$	0.555		$C_{\text {th4 }}$	0.001215	
$R_{\text {th5 }}$	0.529		$C_{\text {th5 }}$	0.00276	
$R_{\text {th6 }}$	0.169		$C_{\text {th6 }}$	0.029	

Infineon

1 Power dissipation
$P_{\text {tot }}=f\left(T_{\mathrm{C}}\right)$

3 Transient thermal impedance
$Z_{\text {thJC }}=f\left(t_{\mathrm{p}}\right)$
parameter: $D=t_{p} / T$

2 Safe operating area

$I_{D}=f\left(V_{D S}\right)$
parameter : $D=0, T_{C}=25^{\circ} \mathrm{C}$

4 Typ. output characteristic

$I_{D}=f\left(V_{D S}\right) ; \quad T_{j}=25^{\circ} \mathrm{C}$
parameter: $t_{\mathrm{p}}=10 \mu \mathrm{~s}, V_{\mathrm{GS}}$

5 Typ. output characteristic
$I_{D}=f\left(V_{D S}\right) ; T_{j}=150^{\circ} \mathrm{C}$
parameter: $t_{\mathrm{p}}=10 \mu \mathrm{~s}, V_{\mathrm{GS}}$

7 Drain-source on-state resistance
$R_{\text {DS(on) }}=f\left(T_{\mathrm{j}}\right)$
parameter : $I_{D}=2.8 \mathrm{~A}, V_{G S}=10 \mathrm{~V}$

6 Typ. drain-source on resistance
$R_{\text {DS(on) }}=f\left(I_{D}\right)$
parameter: $T_{j}=150^{\circ} \mathrm{C}, V_{\mathrm{GS}}$

8 Typ. transfer characteristics

$I_{\mathrm{D}}=f\left(V_{\mathrm{GS}}\right) ; V_{\mathrm{DS}} \geq 2 \times I_{\mathrm{D}} \times R_{\mathrm{DS}(\mathrm{on}) \max }$ parameter: $t_{\mathrm{p}}=10 \mu \mathrm{~s}$

infineon

9 Typ. gate charge

$V_{G S}=f\left(Q_{\text {Gate }}\right)$
parameter: $I_{D}=4.5 \mathrm{~A}$ pulsed

11 Typ. drain current slope
$\mathrm{d} / \mathrm{d} t=\mathrm{f}\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$ par.: $V_{D S}=380 \mathrm{~V}, V_{G S}=0 /+13 \mathrm{~V}, I_{D}=4.5 \mathrm{~A}$

10 Forward characteristics of body diode
$I_{F}=f\left(V_{S D}\right)$
parameter: $T_{\mathrm{j}}, \mathrm{tp}=10 \mu \mathrm{~s}$

12 Typ. switching time

$t=f\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$ par.: $V_{D S}=380 \mathrm{~V}, V_{G S}=0 /+13 \mathrm{~V}, I_{\mathrm{D}}=4.5 \mathrm{~A}$

13 Typ. switching time

$t=f\left(I_{\mathrm{D}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, R_{\mathrm{G}}=18 \Omega$

15 Typ. switching losses
$E=f\left(I_{\mathrm{D}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$ par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, R_{\mathrm{G}}=18 \Omega$

14 Typ. drain source voltage slope

$\mathrm{d} v / \mathrm{d} t=\mathrm{f}\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, I_{\mathrm{D}}=4.5 \mathrm{~A}$

16 Typ. switching losses

$E=f\left(R_{\mathrm{G}}\right)$, inductive load, $T_{\mathrm{j}}=125^{\circ} \mathrm{C}$
par.: $V_{\mathrm{DS}}=380 \mathrm{~V}, V_{\mathrm{GS}}=0 /+13 \mathrm{~V}, I_{\mathrm{D}}=4.5 \mathrm{~A}$

infineon

17 Avalanche SOA
$I_{\mathrm{AR}}=f\left(t_{\mathrm{AR}}\right)$
par.: $T_{j} \leq 150^{\circ} \mathrm{C}$

19 Drain-source breakdown voltage
$V_{(\mathrm{BR}) \mathrm{DSS}}=f\left(T_{\mathrm{j}}\right)$

18 Avalanche energy
$E_{\text {AS }}=f\left(T_{\mathrm{j}}\right)$
par.: $I_{D}=3.4 \mathrm{~A}, V_{D D}=50 \mathrm{~V}$

20 Avalanche power losses

$P_{\text {AR }}=f(f)$
parameter: $E_{A R}=0.4 \mathrm{~mJ}$

Infineon

21 Typ. capacitances
$C=f\left(V_{D S}\right)$
parameter: $V_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

22 Typ. $C_{\text {oss }}$ stored energy
$E_{\mathrm{oss}}=f\left(V_{\mathrm{DS}}\right)$

Definition of diodes switching characteristics

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	2.18	2.39	0.086	0.094
A1	0.80	1.14	0.031	0.045
b	0.64	0.89	0.025	0.035
b2	0.65	1.15	0.026	0.045
b4	4.95	5.50	0.195	0.217
c	0.46	0.58	0.018	0.023
c2	0.46	0.89	0.018	0.035
D	5.97	6.22	0.235	0.245
D1	5.04	5.44	0.198	0.214
E	6.35	6.73	0.250	0.265
E1	4.90	5.10	0.193	0.201
e	2.29		0.090	
e1	4.57		0.180	
N	3		3	
L	3.40	3.60	0.134	0.142
L1	0.90	1.10	0.035	0.043
L2	0.90	1.10	0.035	0.043

DOCUMENT NO. Z8B00003329 SCALE

EUROPEAN PROJECTION

ISSUE DATE
$17-01-2008$
REVISION
03

```
Published by
Infineon Technologies AG
81726 Munich,Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
```


Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{0} \mathrm{~J}$-STD20 and JESD22
 ${ }^{1}$ Repetitve avalanche causes additional power losses that can be calculated as $P_{\mathrm{AV}}=E_{\mathrm{AR}^{*}}$.
 ${ }^{2}$ Device on $40 \mathrm{~mm}^{*} 40 \mathrm{~mm}^{*} 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for drain connection. PCB is vertical without blown air.
 ${ }^{3} C_{0 \text { (er) }}$ is a fixed capacitance that gives the same stored energy as $C_{\text {oss }}$ while $V_{\text {DS }}$ is rising from 0 to $80 \% V_{\text {DSs }}$.
 ${ }^{4} C_{0 \text { o(tr) }}$ is a fixed capacitance that gives the same charging time as $C_{\text {oss }}$ while $V_{D S}$ is rising from 0 to $80 \% V_{D S S}$.
 $5_{I_{\text {SD }}<}<I_{D}$, di/dt<=400A/us, $\mathrm{V}_{\text {DClink }}=400 \mathrm{~V}, \mathrm{~V}_{\text {peak }}<\mathrm{V}_{\text {BR, DSS }}, T_{\mathrm{j}}<\mathrm{T}_{\mathrm{j}, \text { max }}$.
 Identical low-side and high-side switch.

