The documentation and process conversion measures necessary to comply with this revision shall be completed by 24 February 2015.

INCH-POUND

MIL-PRF-19500/705E 24 November 2014 SUPERSEDING MIL-PRF-19500/705D 14 May 2014

PERFORMANCE SPECIFICATION SHEET

TRANSISTOR, FIELD EFFECT RADIATION HARDENED, N-CHANNEL, SILICON DEVICE TYPES 2N7488T3, 2N7489T3, 2N7490T3, AND 2N7556T3 JANTXVR AND JANSR

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product described herein shall consist of this specification sheet and MIL-PRF-19500.

1. SCOPE

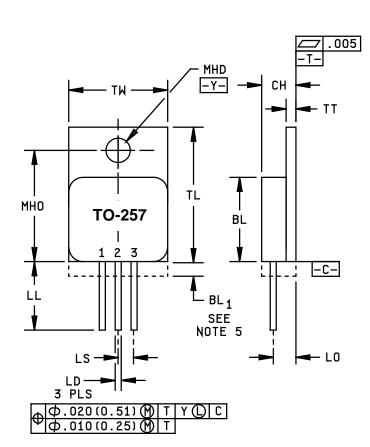
- 1.1 <u>Scope</u>. This specification covers the performance requirements for a N-Channel, enhancement-mode, MOSFET, radiation hardened (total dose and single event effects (SEE), power transistor. Two levels of product assurance are provided for each encapsulated device type as specified in MIL-PRF-19500 $_{\tau}$ with avalanche energy maximum rating (E_{AS}) and maximum avalanche current (I_{AS}) for use in particular power-switching applications.
- 1.2 <u>Package outlines</u>. The device package outlines are as follows: TO-257AA in accordance with figure 1 for all packaged device types. The dimensions and topography for JANHC and JANKC unencapsulated die are as listed in slash sheet MIL-PRF-19500/741.
 - 1.3 Maximum ratings. T_A = +25°C, unless otherwise specified.

Туре	P _T (1)	P _T	$R_{\theta JC}$	V_{DS}	V_{DG}	V_{GS}	I _{D1} (3) (4)	I _{D2} (3) (4)	Is	I _{DM} (5)	TJ
	T _C = +25°C	T _A = +25°C	(2)				T _C = +25°C	T _C = +100°C			and T _{STG}
	W	W	°C/W	V dc	V dc	V dc	A dc	A dc	A dc	A (pk)	<u>°C</u>
2N7488T3	75	1.56	1.67	130	130	±20	18	12	18	72	-55
2N7489T3	75	1.56	1.67	200	200	±20	12	7.6	12	48	to
2N7490T3	75	1.56	1.67	250	250	±20	9.6	6.0	9.6	38.4	+150
2N7556T3	75	1.56	1.67	250	250	±20	9.6	6.0	9.6	38.4	

- (1) Derate linearly 0.6 W/°C for $T_C > +25$ °C.
- (2) See figure 2, thermal impedance curves.
- (3) The following formula derives the maximum theoretical I_D specs. I_D is limited to 18 A by package and device construction.

$$I_{\rm D} = \sqrt{\frac{T_{\rm JM} - T_{\rm C}}{\left(R_{\rm \theta JC}\right) x \left(R_{\rm DS}(\text{ on }) \text{ at } T_{\rm JM}\right)}}$$

- (4) See figure 3, maximum drain current graphs.
- (5) $I_{DM} = 4 \times I_{D1}$; I_{D1} as calculated in note (3).


AMSC N/A FSC 5961

^{*} Comments, suggestions, or questions on this document should be addressed to DLA Land and Maritime, ATTN: VAC, P.O. Box 3990, Columbus, OH 43218-3990, or emailed to Semiconductor@dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at https://assist.dla.mil.

1.4 Primary electrical characteristics at T_C = +25°C.

Туре	$ \begin{array}{c} \text{Min } V_{(BR)DSS} \\ V_{GS} = 0 \end{array} $	$V_{GS(TH)1} \\ V_{DS} \geq V_{GS} \\ I_D = 1.0 \text{ mA} \\ dc$		$V_{DS} \ge V_{GS}$ $V_{GS} = 0$		Max r _D V _{GS} = 12	E _{AS}
	$I_D = 1.0 \text{ mA}$ dc			v _{DS} = 80 percent of rated V _{DS}	T _J = +25°C	T _J = +150°C	
	V dc	<u>V</u> <u>Min</u>	<u>dc</u> <u>Max</u>	μA dc	Ω	Ω	<u>mJ</u>
2N7488T3 2N7489T3 2N7490T3 2N7556T3	130 200 250 250	2.5 2.5 2.5 2.5	4.5 4.5 4.5 4.5	10 10 10 10	0.090 0.230 0.410 0.410	0.207 0.522 0.820 0.820	80 60 59 59

- (1) Pulsed (see 4.5.1).
- 1.5 <u>Part or Identifying Number (PIN)</u>. The PIN is in accordance with MIL-PRF-19500, and as specified herein. See 6.5 for PIN construction example and 6.6 for a list of available PINs.
- 1.5.1 <u>JAN certification mark and quality level</u>. The quality level designators for encapsulated devices that are applicable for this specification sheet from the lowest to the highest level are as follows: "JANTXV" and "JANS".
- 1.5.2 <u>JAN brand and quality level designators for unencapsulated devices (die)</u>. See 6.7 for unencapsulated devices.
- 1.5.3 <u>Radiation hardness assurance (RHA) designator</u>. The RHA levels that are applicable for this specification sheet from lowest to highest for JANTXV and JANS quality levels are as follows: "M", "D", "P", "L", and "R".
- 1.5.4 <u>Device type</u>. The designation system for the device types of transistors covered by this specification sheet are as follows.
- 1.5.4.1 <u>First number and first letter symbols</u>. The transistors of this specification sheet use the first number and letter symbols "2N".
- 1.5.4.2 <u>Second number symbols</u>. The second number symbols for the transistors covered by this specification sheet are as follows: "7488", "7489", "7490" and "7556".
- 1.5.5 <u>Suffix letters</u>. The suffix letters "T3" are used on devices that are packaged in the TO-257AA package of figure 1.
 - 1.5.5 Lead finish. The lead finishes applicable to this specification sheet are listed on QML-19500.

Ltr	Inch	nes	Millimeters			
	Min Max		Min	Max		
BL	.410	.430	10.41	10.92		
BL ₁		.033		0.84		
СН	.190	.200	4.83	5.08		
LD	.025	.035	0.64	0.89		
LL	.500 .625 12.70		15.88			
LO	.120 BS0	SC				
LS	.100 BS0	0	2.54 BSC			
MHD	.140	.150	3.56	3.81		
МНО	.527	.537	13.39	13.64		
TL	.645	.665	16.38	16.89		
TT	.035	.045	0.89	1.14		
TW	.410 .420 10.41 10.67					
Term 1	Drain					
Term 2	Source					
Term 3	Gate					

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. The lid shall be electrically isolated from the drain, gate and source.
- 4. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- 5. This area is for the lead feed-thru eyelets (configuration is optional, but will not extend beyond this zone).

FIGURE 1. Physical dimensions for TO-257AA.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3 and 4 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-750 - Test Methods for Semiconductor Devices.

(Copies of these documents are available online at http://quicksearch.dla.mil.)

2.3 <u>Order of precedence</u>. Unless otherwise noted herein or in the contract, in the event of a conflict between the text of this document and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 General. The individual item requirements shall be as specified in MIL-PRF-19500 and as modified herein.
- 3.2 <u>Qualification</u>. Devices furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.2 and 6.3).
- 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500 and as follows.

I_{AS} Rated avalanche current, nonrepetitive nC nano Coulomb.

- 3.4 <u>Interface and physical dimensions</u>. Interface and physical dimensions shall be as specified in <u>MIL-PRF-19500</u>, and on figure 1 (TO-257AA). Methods used for electrical isolation of the terminals shall employ materials that contain a minimum of 90 percent Al₂O₃ (ceramic).
- 3.4.1 <u>Lead formation and finish</u>. Lead finish shall be solderable in accordance with MIL-STD-750, MIL-PRF-19500 and herein. Where a choice of finish is desired, it shall be specified in the acquisition document (see 6.2). When lead formation is performed, as a minimum, the vendor shall perform 100 percent hermetic seal in accordance with screen 14 of MIL-PRF-19500 and 100 percent dc testing in accordance with table I, subgroup 2 herein.
- 3.4.2 <u>Internal construction</u>. Multiple chip construction shall not be permitted to meet the requirements of this specification.

- 3.5 <u>Electrostatic discharge protection</u>. The devices covered by this specification require electrostatic discharge protection.
- 3.5.1 <u>Handling</u>. Metal oxide semiconductor (MOS) devices must be handled with certain precautions to avoid damage due to the accumulation of static charge. However, the following handling practices are recommended (see 3.5).
 - a. Devices should be handled on benches with conductive handling devices.
 - b. Ground test equipment, tools, and personnel handling devices.
 - c. Do not handle devices by the leads.
 - Store devices in conductive foam or carriers.
 - e. Avoid use of plastic, rubber, or silk in MOS areas.
 - Maintain relative humidity above 50 percent if practical.
 - g. Care should be exercised during test and troubleshooting to apply not more than maximum rated voltage to any lead.
 - h. Gate must be terminated to source, R \leq or 100 k Ω , whenever bias voltage is applied drain to source.
- 3.6 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in 1.3, 1.4, and table I.
 - 3.7 Electrical test requirements. The electrical test requirements shall be as specified in table I.
 - 3.8 Marking. Marking shall be in accordance with MIL-PRF-19500.
- 3.9 <u>Workmanship</u>. Semiconductor devices shall be processed in such a manner as to be uniform in quality and shall be free from other defects that will affect life, serviceability, or appearance.
 - 4. VERIFICATION
 - 4.1 <u>Classification of inspections</u>. The inspection requirements specified herein are classified as follows:
 - a. Qualification inspection (see 4.2).
 - b. Screening (see 4.3).
 - c. Conformance inspection (see 4.4 and table I and II).
- 4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500 and as specified herein.
- 4.2.1 <u>Group E qualification</u>. Group E inspection shall be performed for qualification or re-qualification only. In case qualification was awarded to a prior revision of the specification sheet that did not request the performance of table III tests, the tests specified in table III herein that were not performed in the prior revision shall be performed on the first inspection lot of this revision to maintain qualification.
- 4.2.1.1 <u>Single event effects SEE</u>. SEE shall be performed at initial qualification and after process or design changes which may affect radiation hardness (see table III and table IV). Upon qualification, manufacturers shall provide the verification test conditions from section 5 of method 1080 of MIL-STD-750 that were used to qualify the device for inclusion into section 6 of the slash sheet. End-point measurements shall be in accordance with table II. SEE characterization data shall be made available upon request of the qualifying or acquiring activity.

4.3 <u>Screening (JANS and JANTXV)</u>. Screening shall be in accordance with table E-IV of MIL-PRF-19500, and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see table E-IV	Measurement					
of MIL-PRF-19500) (1) (2)	JANS	JANTXV				
(3)	Gate stress test (see 4.3.1)	Gate stress test (see 4.3.1)				
(3)	Method 3470 of MIL-STD-750, E _{AS} test (see 4.3.2)	Method 3470 of MIL-STD-750, E _{AS} test (see 4.3.2)				
(3) 3c	Method 3161 of MIL-STD-750, thermal impedance (see 4.3.3)	Method 3161 of MIL-STD-750, thermal impedance (see 4.3.3)				
9	Subgroup 2 of table I herein I _{DSS1} , I _{GSSF1} , I _{GSSR1} , as a minimum	Not applicable				
10	Method 1042 of MIL-STD-750, test condition B	Method 1042 of MIL-STD-750, test condition B				
11	$\begin{split} &I_{GSSF1},I_{GSSR1},I_{DSS1},r_{DS(ON)1},V_{GS(TH)1}\\ &Subgroup\ 2\ of\ table\ I\ herein.\\ &\Delta I_{GSSF1}=\pm 20\ nA\ dc\ or\ \pm 100\ percent\ of\ initial\ value,\ whichever\ is\ greater.\\ &\Delta I_{GSSR1}=\pm 20\ nA\ dc\ or\ \pm 100\ percent\ of\ initial\ value,\ whichever\ is\ greater.\\ &\Delta I_{DSS1}=\pm 10\ \mu A\ dc\ or\ \pm 100\ percent\ of\ initial\ value,\ whichever\ is\ greater. \end{split}$	I _{GSSF1} , I _{GSSR1} , I _{DSS1} , r _{DS(ON)1} , V _{GS(TH)1} Subgroup 2 of table I herein.				
12	Method 1042 of MIL-STD-750, test condition A	Method 1042 of MIL-STD-750, test condition A				
13	Subgroups 2 and 3 of table I herein $\Delta I_{GSSF1} = \pm 20$ nA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{GSSR1} = \pm 20$ nA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DSS1} = \pm 10$ μA dc or ± 100 percent of initial value, whichever is greater. $\Delta I_{DSS(ON)1} = \pm 20$ percent of initial value. $\Delta V_{GS(TH)1} = \pm 20$ percent of initial value.	Subgroup 2-of table I herein $ \Delta I_{GSSF1} = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.} $ $ \Delta I_{GSSR1} = \pm 20 \text{ nA dc or } \pm 100 \text{ percent of initial value, whichever is greater.} $ $ \Delta I_{DSS1} = \pm 10 \mu\text{A dc or } \pm 100 \text{ percent of initial value, whichever is greater.} $ $ \Delta I_{DS(ON)1} = \pm 20 \text{ percent of initial value.} $ $ \Delta V_{GS(TH)1} = \pm 20 \text{ percent of initial value.} $				
17	For TO-257AA packages: Method 1081 of MIL-STD-750 (see 4.3.4), Endpoints: Subgroup 2 of table I herein	For TO-257AA packages: Method 1081 of MIL-STD-750 (see 4.3.4), Endpoints: Subgroup 2 of table I herein				

- (1) At the end of the test program, $I_{\text{GSSF1}},\,I_{\text{GSSR1}},$ and I_{DSS1} are measured.
- (2) An out-of-family program to characterize I_{GSSF1} , I_{GSSR1} , I_{DSS1} , and $V_{GS(th)1}$ shall be invoked.
- (3) Shall be performed anytime after temperature cycling, screen 3a. JANTXV level does not need to be repeated in screening requirements.

- 4.3.1 Gate stress test. Apply $V_{GS} = 24 \text{ V}$, minimum for $t = 250 \mu\text{S}$, minimum.
- 4.3.2 Single pulse avalanche energy (E_{AS}).
 - a. Peak current $I_{AS} = I_{D1}$.
 - b. Inductance $\left[\frac{2E_{AS}}{\left(I_{D1}\right)^2} \right] \left[\frac{V_{BR} V_{DD}}{V_{BR}} \right] \, \text{mH minimum}.$

 - d. Supply voltage V_{DD} = 25 V dc, except V_{DD} = 50 V dc for 2N7490T3 and 2N7556T3.

 - g. Number of pulses to be applied 1 pulse minimum.
- 4.3.3 <u>Thermal impedance</u>. The thermal impedance measurements shall be performed in accordance with method 3161 of MIL-STD-750 using the guidelines in that method for determining I_M , I_H , t_H , t_{SW} , (and V_H where appropriate). Measurement delay time (t_{MD}) = 70 μ s maximum. See table III, group E, subgroup 4 herein.
 - 4.3.4 <u>Dielectric withstanding voltage</u>.
 - a. Magnitude of test voltage......800 V dc.
 - b. Duration of application of test voltage......15 seconds (min).
 - c. Points of application of test voltage......All leads to case (bunch connection).
 - d. Method of connection......Mechanical.
 - e. Kilovolt-ampere rating of high voltage source......1,200 V/1.0 mA (min).
 - f. Maximum leakage current......1.0 mA.
 - g. Voltage ramp up time.....500 V/second.
 - 4.4 Conformance inspection. Conformance inspection shall be in accordance with MIL-PRF-19500.
- 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with table E-V of MIL-PRF-19500 and table I herein.
- 4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VIA (JANS) and table E-VIB (JANTXV) of MIL-PRF-19500, and as follows.

4.4.2.1 Group B inspection, table E-VIA (JANS) of MIL-PRF-19500.

<u>Subgroup</u>	Method	<u>Condition</u>
В3	1051	Test condition G, 100 cycles.
В3	2077	Scanning electron microscope (SEM).
B4	1042	Intermittent operation life, condition D. No heat sink or forced-air cooling on the device shall be permitted during the on cycle. $t_{\text{on}} = 30 \text{ seconds minimum}.$
B5	1042	Accelerated steady-state gate bias, condition B, V_{GS} = rated; T_A = +175°C, t = 24 hours minimum; or T_A = +150°C, t = 48 hours minimum.
B5	1042	Accelerated steady-state reverse bias, condition A, V_{DS} = rated; T_A = +175°C, t = 120 hours minimum; or T_A = +150°C, t = 240 hours minimum.
B5	2037	Bond strength, test condition D.

4.4.2.2 Group B inspection, table E-VIB (JANTXV) of MIL-PRF-19500.

Subgroup	Method	Condition
B2	1051	Test condition G, 25 cycles.
В3	1042	Intermittent operation life, condition D. No heat sink or forced-air cooling on the device shall be permitted during the on cycle. $t_{\rm on}$ = 30 seconds minimum.
B5 and B6		Not applicable.

4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-VII of MIL-PRF-19500 and as follows.

<u>Subgroup</u>	<u>Method</u>	<u>Condition</u>
C2	2036	Test condition A; weight = 10 pounds; t = 10 s.
C5	3161	Thermal resistance, see 4.5.2.
C6	1042	Intermittent operation life, condition D. No heat sink or forced-air cooling on the device shall be permitted during the on cycle. $t_{\text{on}} = 30$ seconds minimum.

- 4.4.4 <u>Group D inspection</u>. Group D inspection shall be conducted in accordance with table E-VIII of <u>MIL-PRF-19500</u> and table II herein.
- 4.4.5 <u>Group E inspection</u>. Group E inspection shall be conducted in accordance with the conditions specified for subgroup testing in table E-IX of MIL-PRF-19500 and as specified in table III herein.
 - 4.5 <u>Methods of inspection</u>. Methods of inspection shall be as specified in the appropriate tables and as follows.
 - 4.5.1 Pulse measurements. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.
- 4.5.2 <u>Thermal resistance</u>. The thermal resistance measurements shall be performed in accordance with method 3161 of MIL-STD-750 using the guidelines in that method for determining I_M , I_H , I

TABLE I. Group A inspection.

Inspection 1/		MIL-STD-750	Symbol	Lir	mits	Unit
	Method	Condition		Min	Max	
Subgroup 1						
Visual and mechanical inspection	2071					
Subgroup 2						
Thermal impedance 2/	3161	See 4.3.3	Z ₀ JC			°C/W
Breakdown voltage drain to source	3407	$V_{GS} = 0$, $I_D = 1$ mA dc, bias condition C	V _{(BR)DSS}			
2N7488T3 2N7489T3				130 200		V dc V dc
2N7490T3				250		V dc V dc
2N7556T3				250		V dc
Gate to source voltage (threshold)	3403	$\begin{split} V_{DS} &\geq V_{GS}, \\ I_D &= 1 \text{ mA dc} \end{split}$	V _{GS(TH)1}	2.5	4.5	V dc
Gate current	3411	$V_{GS} = +20 \text{ V}$ dc, bias condition C, $V_{DS} = 0$	I _{GSSF1}		+100	nA dc
Gate current	3411	V_{GS} = -20 V dc, bias condition C, V_{DS} = 0	I _{GSSR1}		-100	nA dc
Drain current	3413	V_{GS} = 0, bias condition C, V_{DS} = 80 percent of rated V_{DS} ,	I _{DSS1}		10	μA dc
Static drain to source on-state resistance	3421	$V_{GS} = 12 \text{ V dc}$, condition A, pulsed (see 4.5.1), $I_D = I_{D2}$	r _{DS(ON)1}			
2N7488T3					0.090	Ω
2N7489T3 2N7490T3					0.230 0.410	Ω
2N7556T3					0.410	Ω
Forward voltage	4011	$V_{GS} = 0$, condition A, $I_D = I_{D1}$	V_{SD}		1.2	V dc

See footnotes at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/	MIL-STD-750		Symbol	Limits		Unit
	Method	Condition		Min	Max	
Subgroup 3 High temperature operation		$T_{C} = T_{J} = +125^{\circ}C$				
Gate current	3411	$V_{GS} = \pm 20 \text{ V dc}$, bias condition C, $V_{DS} = 0$	I _{GSS2}		±200	nA dc
Drain current	3413	V_{GS} = 0, bias condition C, V_{DS} = 80 percent of rated V_{DS}	I _{DSS2}		25	μA dc
Static drain to source on- state resistance 2N7488T3 2N7489T3 2N7490T3, 2N7556T3	3421	$V_{GS} = 12 \text{ V dc}$, condition A, pulsed (see 4.5.1), $I_D = I_{D2}$	r _{DS(ON)3}		0.180 0.483 0.780	Ω Ω Ω
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS}$, $I_D = 1$ mA dc	V _{GS(TH)2}	1.5		V dc
Low temperature operation		$T_C = T_J = -55^{\circ}C$				
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS(TH)3}, I_D = 1 \text{ mA dc}$	V _{GS(TH)3}		5.5	V dc
Subgroup 4						
Forward transconductance 2N7488T3 2N7489T3 2N7490T3 2N7556T3	3475	$I_D = I_{D2}$, $V_{DD} = 15 \text{ V dc (see 4.5.1)}$	9FS	8.5 6 6 4		\$ \$ \$ \$ \$
Switching time test	3472	$I_D = I_{D1}, V_{GS} = 12 \text{ V dc}, R_G = 7.5 \Omega,$				
Turn-on delay time 2N7488T3 2N7489T3 2N7490T3, 2N7556T3		$V_{DD} = 50$ percent of rated V_{DS}	t _{D(on)}		20 25 25	ns ns ns
Rise time 2N7488T3 2N7489T3 2N7490T3, 2N7556T3			t _r		70 100 100	ns ns ns
Turn-off delay time 2N7488T3 2N7489T3 2N7490T3, 2N7556T3			t _{D(off)}		25 35 35	ns ns ns
Fall time 2N7488T3 2N7489T3 2N7490T3, 2N7556T3			t _f		35 30 30	ns ns ns

See footnotes at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/		MIL-STD-750	Symbol	Lir	nits	Unit
	Method	Condition		Min	Max	
Subgroup 5						
Safe operating area test (high voltage)	3474	See figure 4 $t_p = 10$ ms min. $V_{DS} = 80$ percent of max. rated V_{DS}				
Electrical measurements		See table I, subgroup 2				
Subgroup 6						
Not applicable						
Subgroup 7						
Gate charge	3471	Condition B. $I_D = I_{D1}$, $V_{GS} = 12 \text{ V dc}$				
On-state gate charge 2N7488T3 2N7489T3 2N7490T3 2N7556T3		V_{DD} = 50 percent of rated V_{DS}	Q _{G(ON)}		48 35 28 32	nC nC nC
Gate to source charge 2N7488T3 2N7489T3 2N7490T3 2N7556T3			Q _{GS}		16 9 7.4 11	nC nC nC
Gate to drain charge 2N7488T3 2N7489T3 2N7490T3 2N7556T3			Q_{GD}		18 15 12 16	nC nC nC
Reverse recovery time 2N7488T3 2N7489T3 2N7490T3, 2N7556T3	3473	Condition A, di/dt = -100 A/ μ s, $V_{DD} \leq 50$ V, $I_D = I_{D1}$	t _{rr}		200 300 300	ns ns ns

For sampling plan, see MIL-PRF-19500.

This test required for the following end-point measurements only (not intended for 4.3, screen 9 or 11): Group B, subgroups 2 and 3 (JANTXV).
Group B, subgroups 3 and 4 (JANS).
Group C, subgroups 2 and 6.
Group E, subgroup 1.

TABLE II. Group D inspection.

Inspection	MIL-STD-750		Symbol	Pre-irradia	Pre-irradiation limits		adiation nits	Unit
<u>1</u> / <u>2</u> / <u>3</u> /	Method Conditions			R		F		
				Min	Max	Min	Max	
Subgroup 1								
Not applicable								
Subgroup 2		T _C = + 25°C						
Steady-state total dose irradiation (V _{GS} bias) <u>4</u> /	1019	$V_{GS} = 12 \text{ V};$ $V_{DS} = 0$						
Steady-state total dose irradiation (V _{DS} bias) <u>4/</u>	1019	$V_{GS} = 0;$ $V_{DS} = 80$ percent of rated V_{DS} (preirradiation)						
End-point electricals:		(premadiation)						
Breakdown voltage, drain to source 2N7488T3 2N7489T3 2N7490T3, 2N7556T3	3407	$V_{GS} = 0$; $I_D = 1$ mA; bias condition C	V _{(BR)DSS}	130 200 250		130 200 250		V dc V dc V dc
Gate to source voltage (threshold)	3403	$V_{DS} \ge V_{GS}$ $I_D = 1 \text{ mA}$	V _{GS(th)1}	2.5	4.5	2.0	4.5	V dc
Gate current	3411	$V_{GS} = +20 \text{ V}; V_{DS} = 0;$ bias condition C	I _{GSSF1}		100		100	nA dc
Gate current	3411	V_{GS} = -20 V; V_{DS} = 0; bias condition C	I _{GSSR1}		-100		-100	nA dc
Drain current	3413	V_{GS} = 0, V_{DS} = 80 percent of rated V_{DS} (preirradiation); bias condition C	I _{DSS}		10		10	μA dc
Static drain to source on-state voltage	3405	$V_{GS} = 12 \text{ V}; I_D = I_{D2}$ condition A, pulsed (see 4.5.1)	V _{DS(on)}					
2N7488T3					1.080		1.080	V dc
2N7489T3					1.763		1.763	V dc
2N7490T3, 2N7556T3					2.484		2.484	V dc
Forward voltage source drain diode	4011	$V_{GS} = 0$; $I_D = I_{D1}$, bias condition A	V _{SD}		1.2		1.2	V dc

For sampling plan see MIL-PRF-19500.

Group D qualification may be performed prior to lot formation. Wafers qualified to these group D QCI

requirements may be used for any other specification sheets utilizing the same die design.

At the manufacturer's option, group D samples need not be subjected to the screening tests, and may be assembled in it's qualified package or in any qualified package that the manufacturer has data to correlate the performance to the designated package.

Separate samples shall be pulled for each bias.

TABLE III. Group E inspection (all quality levels) for qualification or re-qualification only.

Inspection		MIL-STD-750	Qualification and large lot quality
	Method	Conditions	conformance inspection
Subgroup 1			45 devices c = 0
Temperature cycling	1051	Test condition G, 500 cycles	0 = 0
Hermetic seal Fine leak Gross leak	1071	As applicable.	
Electrical measurements		See table I, subgroup 2 herein.	
Subgroup 2 1/			45 devices
Steady-state gate bias	1042	Condition B, 1,000 hours.	c = 0
Electrical measurements		See table I, subgroup 2 herein.	
Steady-state reverse bias	1042	Condition A, 1,000 hours.	
Electrical measurements		See table I, subgroup 2 herein.	
Subgroup 4			Sample size
Thermal impedance curves		See MIL-PRF-19500.	N/A
Subgroup 5			15 devices c = 0
Barometric pressure (2N7490T3 and 2N7556T3 only)	1001	Test condition C, V_{DS} = 250 V; $I_{(ISO)}$ < 0.25 mA.	0-0
Subgroup 10			22 devices
Commutating diode for safe operating area test procedure for measuring dv/dt during reverse recovery of power MOSFET transistors or insulated gate bipolar transistors	3476	Test conditions shall be derived by the manufacturer	c = 0
Subgroup 11			
SEE <u>2</u> / <u>3</u> /	1080	See method 1080 of MIL-STD-750.	3 devices

^{1/} A separate sample for each test shall be pulled.

Group E qualification of SEE testing may be performed prior to lot formation. Qualification may be extended to other specification sheets utilizing the same structurally identical die design.

^{3/} Device qualification to a higher level LET is sufficient to qualify all lower level LETs.

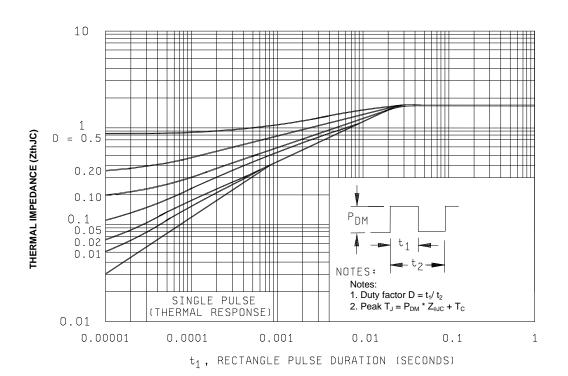
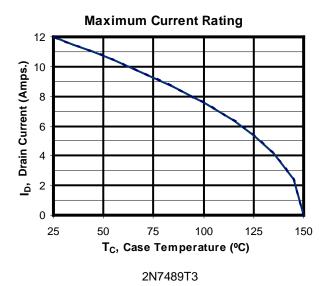
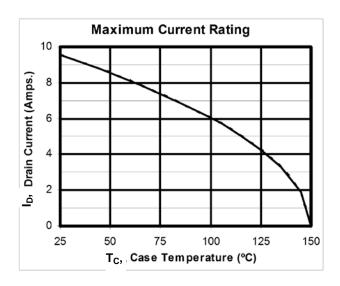
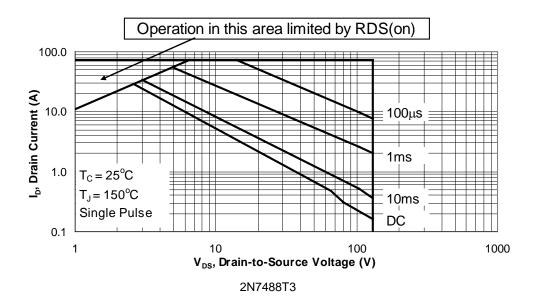




FIGURE 2. Thermal impedance curve.



2N7490T3, 2N7556T3

FIGURE 3. Maximum drain current vs case temperature graphs.

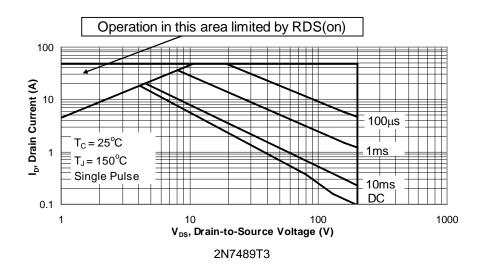
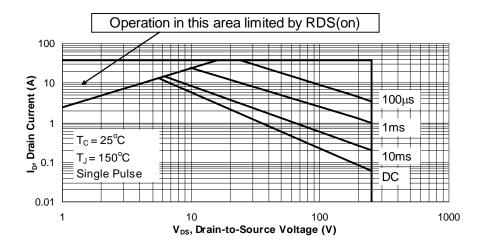



FIGURE 4. Safe operating area graphs - Continued.

2N7490T3

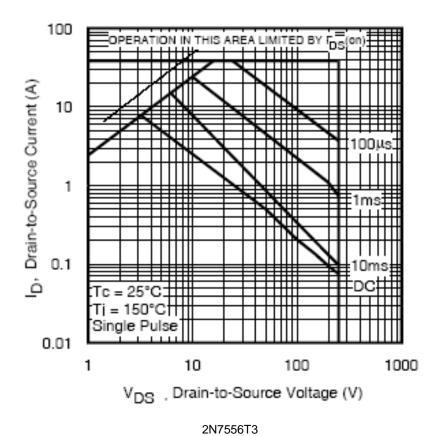
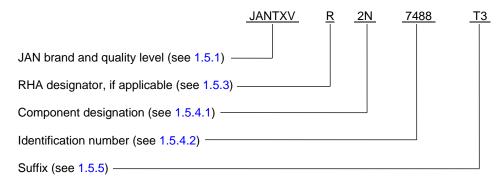


FIGURE 4. Safe operating area graphs - Continued.

5. PACKAGING

5.1 <u>Packaging</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activities within the Military Service or Defense Agency, or within the Military Service's system commands. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.


6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory. The notes specified in MIL-PRF-19500 are applicable to this specification.)

- 6.1 <u>Intended use</u>. Semiconductors conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of this specification.
 - b. Packaging requirements (see 5.1).
 - c. Lead formation and finish (see 3.4.1).
 - d. The complete Part or Identifying Number (PIN), see 1.5.
 - e. For acquisition of RHA designated devices, table II, subgroup 1 testing of group D herein is optional.
 If subgroup 1 is desired, it should be specified in the contract.
 - f. If SEE testing data is desired, it should be specified in the contract or order.
 - g. If specific SEE characterization conditions are desired (see section 6.8 and table IV), manufacturer's CAGE code should be specified in the contract or order.
- 6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List (QML 19500) whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DLA Land and Maritime, ATTN: VQE, P.O. Box 3990, Columbus, OH 43218-3990 or e-mail vqe.chief@dla.mil. An online listing of products qualified to this specification may be found in the Qualified Products Database (QPD) at https://assist.dla.mil.
- 6.4 <u>Cross-reference list</u>. The following table shows the generic P/N and its associated military P/N (without JANTX and RHA prefix).

Generic P/N	Military P/N
IRHY57133CMSE	2N7488T3
IRHY57230CMSE	2N7489T3
	2N7490T3
IRHY57234CMSE	2N7556T3

6.5 PIN construction example. The PINs for encapsulated devices are construction using the following form.

6.6 List of PINs. The following is a list of possible PINs available on this specification sheet.

PINs for devices of the "TXV" quality level	PINs for devices of the "TXV" quality level with RHA (1)	PINs for devices of the "S" quality level	PINs for devices of the "S" quality level with RHA (1)	
JANTXV2N7488T3	JANTXV#2N7488T3	JANS2N7488T3	JANS#2N7488T3	
JANTXV2N7489T3	JANTXV#2N7489T3	JANS2N7489T3	JANS#2N7489T3	
JANTXV2N7490T3	JANTXV#2N7490T3	JANS2N7490T3	JANS#2N7490T3	
JANTXV2N7556T3	JANTXV#2N7556T3	JANS2N7556T3	JANS#2N7556T3	

⁽¹⁾ The number sign (#) represent one of five RHA designators available (M, D, P, L, or R).

- 6.7 <u>JANC die versions</u>. The JANHC and JANKC die versions of these devices are covered under specification sheet <u>MIL-PRF-19500/741</u>.
 - 6.8 Application data.
- 6.8.1 <u>Manufacturer specific irradiation data</u>. Each manufacturer qualified to this slash sheet has characterized its devices to the requirements of MIL-STD-750 method 1080 and as specified herein. Since each manufacturer's characterization conditions can be different and can vary by the version of method 1080 qualified to, the MIL-STD-750 method 1080 revision version date and conditions used by each manufacturer for characterization have been listed here (see table IV) for information only. SEE conditions and figures listed in section 6 are current as of the date of this specification sheet, please contact the manufacturer for the most recent conditions.

TABLE IV. Manufacturers characterization conditions.

Manufactures CAGE	Inspection	MIL-STD-750		Sample
		Method	Conditions	plan
69210 (Applicable to devices with a date code of 16 June 1998 and older) Electrical measurements	SEE <u>1</u> /	1080	See MIL-STD-750 method 1080.0 dated 20 November 2006. See figure 5	
			$I_{\text{GSSF1}},I_{\text{GSSR1}},\text{and}I_{\text{DSS1}}$ in accordance with table I, subgroup 2	3 devices
	SEE irradiation:		Fluence = 3E5 ±20 percent ions/cm ² Flux = 2E3 to 2E4 ions/cm ² /sec, temperature = 25 ±5°C	
			Surface LET = 38 MeV-cm2/mg ± 5% Range = 38 µm ±7.5%, Energy = 300 MeV ±7.5%	
	2N7488T3		In-situ bias conditions: V_{DS} = 130 V and V_{GS} = -20 V (typical 3.75 MeV/nucleon at Texas A & M Cyclotron)	
2N7489T3		In-situ bias conditions: $V_{DS} = 200 \text{ V}$ and $V_{GS} = -20 \text{ V}$ (nominal 3.86 MeV/nucleon at Brookhaven National Lab Accelerator)		
	2N7490T3, 2N7556T3		In-situ bias conditions: V_{DS} = 250 V and V_{GS} = -20 V (nominal 3.86 MeV/nucleon at Brookhaven National Lab Accelerator)	
2N7488T3 2N7489T3 2N7490T3, 2N7556T3		Surface LET = 61 MeV-cm2/mg \pm 5% Range = 31 μ m \pm 10%, Energy = 330 MeV \pm 7.5%		
		In-situ bias conditions: $V_{DS} = 130 \text{ V}$ and $V_{GS} = -10 \text{ V}$ $V_{DS} = 100 \text{ V} \text{ and } V_{GS} = -15 \text{ V}$ $V_{DS} = 50 \text{ V} \text{ and } V_{GS} = -20 \text{ V}$		
		(typical 2.70 MeV/nucleon at Texas A & M Cyclotron)		
		In-situ bias conditions: V_{DS} = 200 V and V_{GS} = -10 V V_{DS} = 185 V and V_{GS} = -15 V V_{DS} = 120 V and V_{GS} = -20 V		
		(nominal 2.92 MeV/nucleon at Brookhaven National Lab Accelerator)		
			In-situ bias conditions: $V_{DS} = 250 \text{ V}$ and $V_{GS} = -15 \text{ V}$ $V_{DS} = 240 \text{ V}$ and $V_{GS} = -20 \text{ V}$ (nominal 2.92 MeV/nucleon at Brookhaven National Lab Accelerator)	
			,	

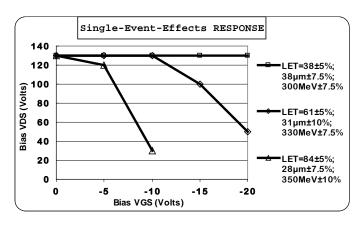
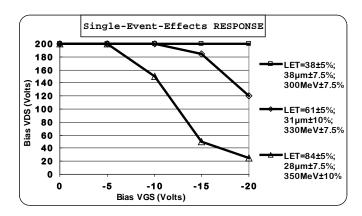

See footnotes at end of table.

TABLE IV. <u>Manufacturers characterization conditions</u> - Continued.


Manufactures Insp	Inspection	MIL-STD-750		Sample
		Method	Conditions	plan
			Surface LET = 84 MeV-cm2/mg \pm 5% Range = 28 μ m \pm 7.5%, Energy = 350 MeV \pm 10%	3 devices
	2N7488T3		In-situ bias conditions: $V_{DS} = 130 \text{ V}$ and $V_{GS} = 0 \text{ V}$ $V_{DS} = 120 \text{ V} \text{ and } V_{GS} = -5 \text{ V}$ $V_{DS} = 30 \text{ V} \text{ and } V_{GS} = -10 \text{ V}$	
			(typical 1.89 MeV/nucleon at Texas A & M Cyclotron)	
	2N7489T3		In-situ bias conditions: $V_{DS} = 200 \text{ V}$ and $V_{GS} = -5 \text{ V}$ $V_{DS} = 150 \text{ V}$ and $V_{GS} = -10 \text{ V}$ $V_{DS} = 50 \text{ V}$ and $V_{GS} = -15 \text{ V}$	
			V_{DS} = 25 V and V_{GS} = -20 V (nominal 1.98 MeV/nucleon at Brookhaven National Lab Accelerate	or)
	2N7490T3, 2N7556T3		In-situ bias conditions: V_{DS} = 250 V and V_{GS} = -5 V V_{DS} = 225 V and V_{GS} = -10 V V_{DS} = 175 V and V_{GS} = -15 V V_{DS} = 50 V and V_{GS} = -20 V	
		(nominal 1.98 MeV/nucleon at Brookhaven National Lab Accelerate	or)	
	Electrical measurements		I_{GSSF1} , I_{GSSR1} , and I_{DSS1} in accordance with table I, subgroup 2	
Upon qua	alification, all ma	nufacture	rs should provide the verification test conditions to be added	to this

^{1/} I_{GSSF1}, I_{GSSR1}, and I_{DSS1} was examined before and following SEE irradiation to determine acceptability for each bias condition. Other test conditions in accordance with table I, subgroup 2, may be performed at the manufacturer's option.

2N7488T3

2N7489T3

2N7490T3, 2N7556T3

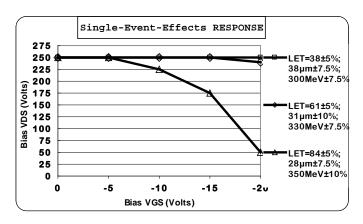


FIGURE 5. Typical SEE safe operating area graphs.

6.9 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extent of the changes.

Custodians:

Army - CR Navy - EC Air Force - 85 NASA - NA Preparing activity: DLA - CC

(Project 5961-2014-141)

Review activity: Army - AV, MI Air Force - 99

DLA - CC

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at https://assist.dla.mil.