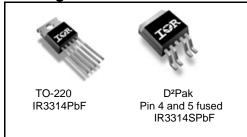


IR3314(S)PbF

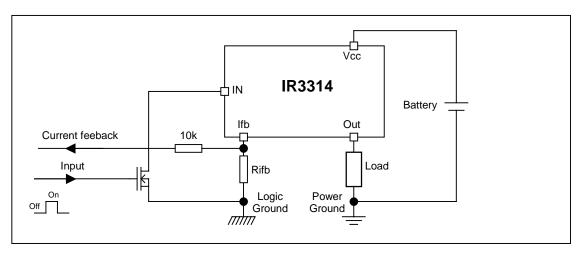
PROGRAMMABLE CURRENT SENSE HIGH SIDE SWITCH

Features

- Load current feedback
- Programmable over current shutdown
- Active clamp
- ESD protection
- Input referenced to Vcc
- Over temperature shutdown
- Reverse battery protection
- Lead-Free


Description

The IR3314(S)PbF is a fully protected 4 terminals high side switch. The input signal is referenced to Vcc. When the input voltage Vcc - Vin is higher than the specified threshold, the output power Mosfet is turned on. When the Vcc - Vin is lower than the specified Vil threshold, the output Mosfet is turned off. A current proportional to the power Mosfet current is sourced to the Ifb pin. Over current shutdown occurs when Vst-Vin > 4.5V. The current shutdown threshold is adjusted by selecting the proper RIfb. Either over current and over temperature latches off the switch. The device is reset by pulling the input pin high. Other integrated protections (ESD, reverse battery, active clamp) make the switch very rugged in automotive environment.


Product Summary

 $\begin{array}{lll} \text{Rds(on)} & 12 \text{ m}\Omega \text{ max.} \\ \text{Vcc op.} & 6 \text{ to } 32\text{V} \\ \text{Current Ratio} & 5300 \\ \text{Prog. Ishutdown} & 6 \text{ to } 58\text{A} \\ \text{Vclamp} & 40\text{V} \end{array}$

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters

are referenced to Vcc lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vcc-Vin	Maximum Vcc voltage	-16	37	
Vcc-Vin cont.	Maximum continuous Vcc voltage	-16	32	V
Vcc-Vfb	Maximum Ifb voltage	-16	33	V
Vcc-Vout	Maximum output voltage	-0.3	37	
lds cont.	Maximum body diode continuous current Rth=60°C/W (1)	_	2.8	Α
lds pulsed	Maximum body diode pulsed current (1)	_	100	^
Pd	Maximum power dissipation Rth=60°C/W	_	2	W
ESD1	Electrostatic discharge voltage (Human body) C=100pF, R=1500Ω	_	4	kV
ESD2	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω	_	0.5	ΚV
Tj max.	Max. storage & operating temperature junction temperature	-40	150	ô
Min Rfb	Minimum on the resistor on Ifb pin	0.3		kΩ
Ifb max.	Max. Ifb current	-50	50	mA

⁽¹⁾ Limited by junction temperature. Pulsed is also limited by wiring

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient D2-Pak Std footprint	60		
Rth2	Thermal resistance junction to case D²-Pak	1.2	_	°C/W
Rth3	Thermal resistance junction to case TO-220	1.2	_	

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
lout	Continuous output current			
	Tambient=85°C, Rth=5°C/W, Tj=125°C] —	18	Α
	Tambient=85°C, Rth=60°C/W, Tj=125°C	_	5	
Rifb	Recommended Ifb resistor (2)(3)	0.5	3.5	kΩ
Pulse min.	Minimum turn-on pulse width	1	_	ms
Fmax.	Maximum operating frequency	_	200	Hz

²⁾ If Rifb is too low, the device can be damaged.

³⁾ If Rifb is too high, the device may not switch on.

Protection Characteristics

Tj=25°C, Rifb=500 to $3.5k\Omega$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Vifb-Vin@Isd	Over-current shutdown threshold	4	4.7	5.6	V	
Tsd	Over temperature threshold		165	_	°C	See fig. 5
OV	Over voltage protection (not latched)	33	35	39	V	
Isdf	Fixed over current shutdown	58	72	90	Α	Vifb <vifb-vin@isd< td=""></vifb-vin@isd<>
lsd_1k	Programmable over current shutdown 1k	18.8	24	30	A	Rifb=1kΩ
Treset	Time to reset protection		50	500	110	See fig. 5
Min. pulse	Min. pulse width (no WAIT state)	200	400	1200	μs	
WAIT	WAIT function timer	0.4	1	2	ms	See fig. 4 and 5
Rds(on) rev.	Reverse battery On state resistance	6	10	18	mΩ	Vcc-Vin=-14V,
						lout=20A

Static Electrical Characteristics

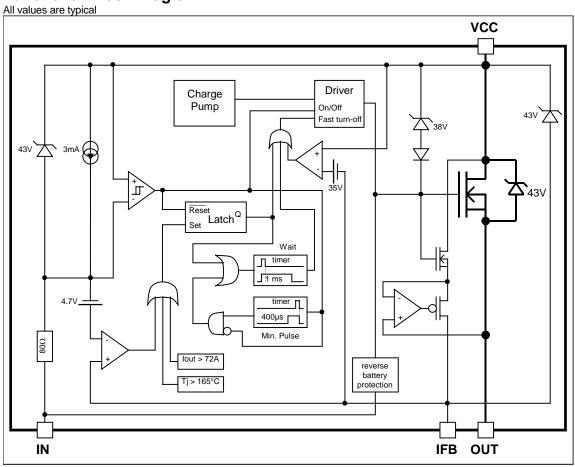
Ti=25°C. Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Vcc op.	Operating Voltage range	6	_	32	V	
Icc off	Supply leakage current	_	1.5	5	μA	Vin=Vcc, Vcc-Vout=14V, Vcc-Vifb=14V
lin, on	On state IN positive current	1.5	3	6	mA	Vcc-Vin=14V
Vih	High level Input threshold voltage (4)	_	5.4	6.2		
Vil	Low level Input threshold voltage (4)	4	4.9	5.8	V	
Vhyst	Input hysteresis Vih-Vil	0.2	0.4	1		
lout	Drain to source leakage current	_	1.2	5	μA	Vin=Vcc, Vcc-Vifb=0V, Vcc-Vout=14V
Rds(on)	On state resistance (5) Tj=25°C	5	9	12		lout=20A, Vcc-Vin=14V
	On state resistance (5) Tj=25°C	5	9.5	17	mΩ	lout=15A, Vcc-Vin=6V
	On state resistance (5) Tj=150°C	10	17	23		Iout=20A, Vcc-Vin=14V
V clamp1	Vcc to Vout clamp voltage 1	36	39	_	V	lout=50mA
V clamp2	Vcc to Vout clamp voltage 2	_	40	43	V	lout=20A

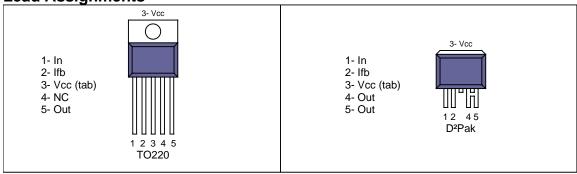
⁽⁴⁾ Input thresholds are measured directly between the input pin and the tab. Any parasitic resistance in common between the load current path and the input signal path can significantly affect the thresholds.

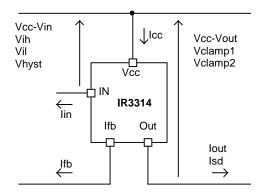
(5) Rdson is measured between the tab and the Out pin, 5mm away from the package.

Switching Electrical Characteristics


Vcc=14V Resistive load=0.50 Ti=25°C

Symbol	Parameter		Тур.	Max.	Units	Test Conditions
Tdon	Turn on delay time to 10% Vcc	5	21	55		
Tr1	Rise time to Vcc-Vout=5V	2	8	20	μs	
Tr2	Rise time to Vcc-Vout=0.1Vcc	7	27	70		
Eon	Turn on energy	_	4.5	_	mJ	See figure 2
Tdoff	Turn off delay time	13	55	140	110	
Tf	Fall time to Vout=10% of Vcc	5	20	55	μs	
Eoff	Turn off energy	_	2	_	mJ	


Current Sense Characteristics


Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ratio	I Load/lifb current ratio	4,500	5,300	6,300		Tj=25°C, Rfb=500Ω,
						lout=40A
Ratio_TC	I Load/lifb variation aver temperature	-5	_	+5	%	Tj=-40°C to 150°C
Offset	Load current diagnostic offset	-0.18	0	+0.15	Α	lout=2A
Trst	Ifb response time (low signal)	_	1	_	μs	90% of the lout step

Functional Block Diagram

Lead Assignments

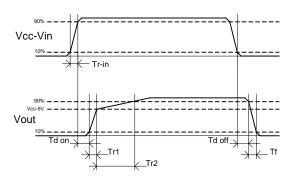
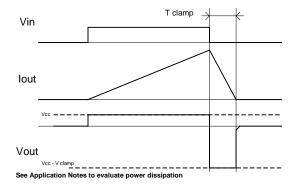



Figure 1 – Voltages and current definitions

Figure 2 - Switching time definitions

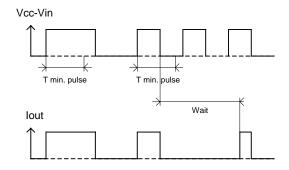


Figure 3 – Active clamp waveforms

Figure 4 - Min. pulse and Wait function

6

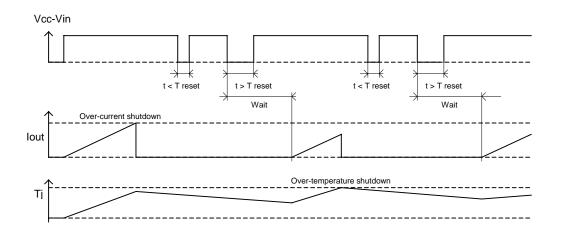
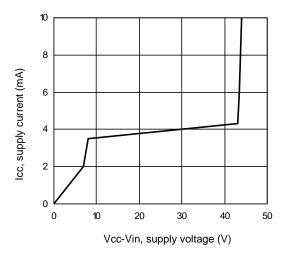



Figure 5 – Protection Timing Diagrams

All curves are typical characteristics. Operation in hatched areas is not recommended. Tj=25°C, Rifb=500ohm, Vcc=14V (unless otherwise specified).

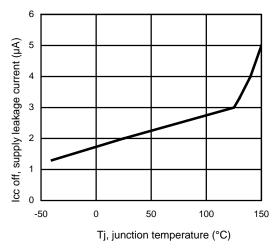
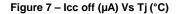
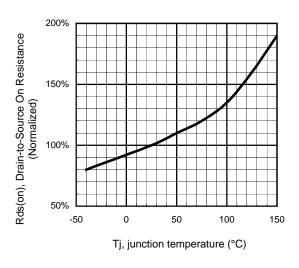




Figure 6 - Icc (mA) Vs Vcc-Vin (V)

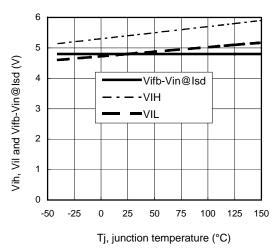


Figure 8 - Normalized Rds(on) (%) Vs Tj (°C)

Figure 9 - Vih, Vil and Vifb-Vin@lsd (V) Vs Tj (°C)

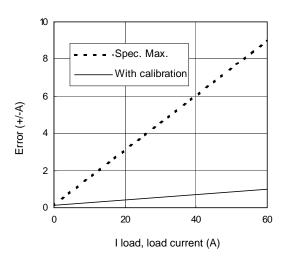


Figure 10 - Error (+/- A) Vs I load (A)

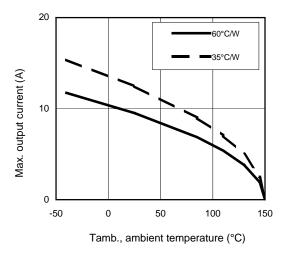


Figure 12 - Max. lout (A) Vs Tamb. (°C)

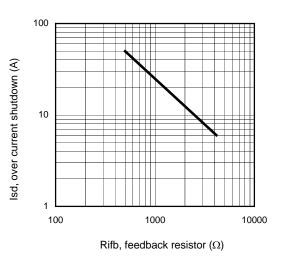


Figure 11 – Ids (A) Vs Rifb (Ω)

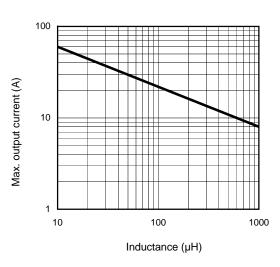
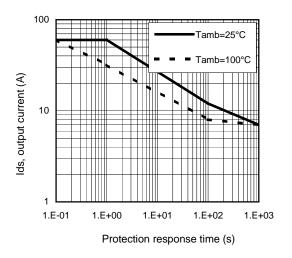
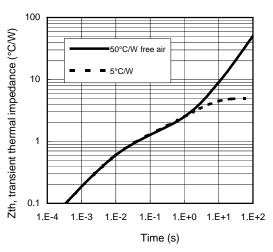
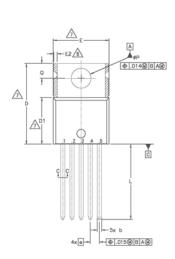
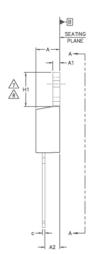
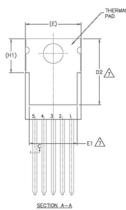



Figure 13 - Max. lout (A) Vs inductance (µH)


Figure 14 – Ids (A) Vs over temperature protection response time (s)


Figure 15 – Transient thermal impedance (°C/W) Vs time (s)

Case Outline 5 Leads - TO220 - Automotive Q100 PbF qualified

S M B O L	DIMENSIONS				
B	MILLIM	ETERS	INC	HES	ZO-E-W
Ľ	MIN.	MAX.	MIN.	MAX.	\$
Α	3.56	4.83	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.03	2.92	.080	.115	
b	0.64	0.89	.025	.035	
b1	0.64	0.84	.025	.033	5
c	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
e	1.70	BSC	.067 BSC		
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
₫P	3.53	3.73	.139	.147	
Q	2.54	3.05	.100	.120	

PLATING-	b—	BASE
(c)		e1 S

- 1.— DIMENSONING AND TOLERANCING AS PER ASME Y14.5 M— 1994.
 2.— DIMENSONS ARE SHOWN IN INCHES (MILLIMETERS).
 3.— LEAD DIMENSON AND FIRST UNCONTROLLED IN L1.
 4.— DIMENSON D, D1 & E DO NOT INCLIDE MAY BE ASME. 1.- DIMENSIONNE AND TOLEPANCHIG AS PER ASME "14.5 M - 1994.

 DIMENSIONS ARE SHOWN IN INCHES [MILLIBETERS].

 3.- LEAD DIMENSION AND FINSH UNCONTROLLED IN U.1.

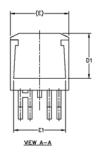
 DIMENSION OF, 01 M € E DO NOT INCLIDE MOLD FLASH WILD FLASH

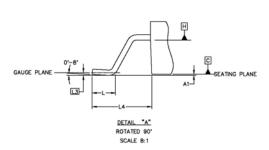
 SHALL NOT EXCEED .005" (0.127) PER SDC. THESE DIMENSIONS ARE

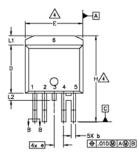
 MESSURED AT THE UTIENTIST EXTREMES OF THE PLASTIC BODY.

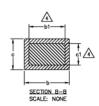
 DIMENSION IN & c.1 APPLY TO BASE METAL ONLY.

 CONTROLLING DIMENSION TO INCHES.

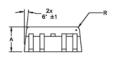

 7.- THERMAL PAD CONTOUR OFTIONAL WITHIN DIMENSIONS E,HI,D2 & E1

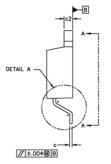

- DIMENSION E 2 X H1 DETINE A ZONE MERRE STAMPING
 AND SINGULATION IRREGULARITIES ARE ALLOWED.
 OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.)
 WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.


10.- LEADS AND DRAIN ARE PLATED WITH 100% Sn

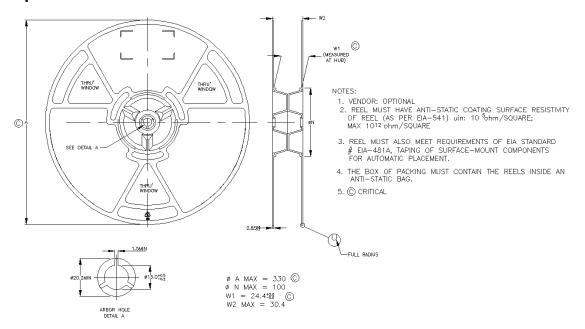


Case Outline - D2PAK 5 leads - Automotive Q100 PbF MSL1 qualified





ı Y			N		
M B O	MILLIM	ETERS	INC	HES	NO TES
Ľ	MIN.	MAX.	MIN.	MAX.	S
Α	4.06	4.83	.160	.190	
A1		0.254		.010	
ь	0.66	0.91	.026	.036	4
ь1	0.66	0.81	.026	.032	
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	4
c2	1.14	1.65	.045	.065	
D	8.51	9.65	.335	.380	3
D1	6.86		.270		
Ε	9.65	10.67	.380	.420	3
E1	6.22		.245		
e	1.70	BSC	.067	BSC	
н	14.73	15.49	.580	.609	
L	1.14	1.39	.045	.055	
L1		1.65		.065	
L2	1.27	1.78	.050	.070	
L3	0.25	BSC	.010	BSC	
L4	4.78	5.28	.188	.208	
m	17.78		.700		
m1	8.89		.350		
n	11.43		.450		
٥	1.93		.076		
р	3.81		.150		
R	0.51	0.71	.020	.028	


FOOT PRINT SCALE 2:1

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- 4. DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.
- 5. CONTROLLING DIMENSION: MILLIMETERS
- 6. LEADS AND DRAIN ARE PLTED WITH 100% Sn

Tape & Reel 5 Lead - D2PAK

International
Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice.

D2Pak is MSL1 qualified

This product has been designed and qualified for the Automotive [Q100] market. 06/12/2006