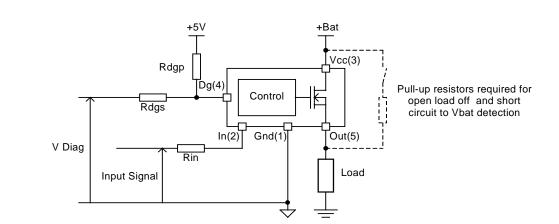
International

IPS6031(S)(R)PbF

INTELLIGENT POWER HIGH SIDE SWITCH

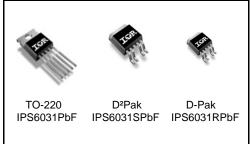

Features

- Over temperature shutdown (with auto-restart)
- Short circuit protection (current limit)
- Reverse battery protection (turns On the MOSFET)
- Full diagnostic capability (short circuit to battery)
- Active clamp
- Open load detection in On and Off state
- Ground loss protection
- Logic ground isolated from power ground
- ESD protection

Description

The IPS6031(S)(R)PbF is a five terminal Intelligent Power Switch (IPS) for use in a high side configuration. It features short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The output current is limited to the Ilim value. The current limitation is activated until the thermal protection acts. The overtemperature protection turns off the device if the junction temperature exceeds the Tshutdown value. It will automatically restart after the junction has cooled 7°C below the Tshutdown value. The reverse battery protection turns On the MOSFET. A diagnostic pin provides different voltage levels for each fault condition. The double level shifter circuitry will allow large offsets between the logic and load ground.

Typical Connection



www.irf.com

Product Summary

Rds(on)	$60 \text{m}\Omega$ max.
Vclamp	39V
I Limit	16A
Open load	3V / 0.55A

Packages

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to Ground lead. (Tambient=25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units
Vout	Maximum output voltage	Vcc-35	Vcc+0.3	
Voffset	Maximum logic ground to load ground offset	Vcc-35	Vcc+0.3	
Vin	Maximum input voltage	-0.3	5.5	V
Vcc max.	Maximum Vcc voltage	_	36	v
Vcc cont.	Maximum continuous Vcc voltage	_	28	
Vcc sc.	Maximum Vcc voltage with short circuit protection	_	30	
lin max.	Maximum IN current	-3	10	mA
ldg max.	Maximum diagnostic output current	-3	10	IIIA
Vdg	Maximum diagnostic output voltage	-0.3	5.5	V
	Maximum power dissipation (internally limited by thermal protection)			
Pd	Rth=5°C/W IPS6031	_	25	W
Fu	Rth=40°C/W IPS6031S 1"sqrt. footprint	_	3.1	vv
	Rth=50°C/W IPS6031R 1"sqrt. footprint	_	2.5	
	Electrostatic discharge voltage (Human body) C=100pF, R=1500 Ω			
	Between In and Vcc	_	1500	
ESD	Other combinations	_	4000	V
ESD	Electrostatic discharge voltage (Machine Model) C=200pF,R=0Ω,L=10µH			v
	Between In and Vcc	_	100	
	Other combinations	—	500	
Tj max.	Max. storage & operating temperature junction temperature	-40	150	°C
Tsoldering	Soldering temperature (10 seconds)	—	300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
Rth1	Thermal resistance junction to ambient IPS6031 TO220 free air	50	—	
Rth2	Thermal resistance junction to case IPS6031 TO220	3.8		
Rth1	Thermal resistance junction to ambient IPS6031S D ² Pak std. footprint	60		
Rth2	Thermal resistance junction to ambient IPS6031S D ² Pak 1" sqrt. footprint	40		°C/W
Rth3	Thermal resistance junction to case IPS6031S D ² Pak	3.8		0/00
Rth1	Thermal resistance junction to ambient IPS6031R D-Pak std. footprint	70	_	
Rth2	Thermal resistance junction to ambient IPS6031R D-Pak 1" sqrt. footprint	50		
Rth3	Thermal resistance junction to case IPS6031R D-Pak	3.8		

Recommended Operating Conditions These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
VIH	High level input voltage	4	5.5	
VIL	Low level input voltage	0	0.9	
lout	Continuous drain current, Tambient=85°C, Tj=125°C, Vin=5V			
	Rth=5°C/W IPS6031		8.9	A
	Rth=40°C/W IPS6031S 1" sqrt. footprint	_	3.1	
	Rth=50°C/W IPS6031R 1" sqrt. footprint	_	2.8	
Rin	Recommended resistor in series with IN pin	4	10	
Rdgs	Recommended resistor in series with DG pin for reverse battery protection	4	20	kΩ
Rdgp	Recommended pull-up resistor for DG	4	20	K52
Rol	Recommended pull-up resistor for open load detection	5	100	
F max.	Max. switching frequency	_	2.5	kHz

Static Electrical Characteristics

Tj=25°C, Vcc=14V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance Tj=25°C	_	46	60		Vin=5V, lout=5A
	ON state resistance Tj=150°C	_	83	100	mΩ	Vin=5V, lout=5A
	ON state resistance Tj=25°C, Vcc=6V	—	55	72	1115.2	Vin=5V, lout=2.5A
	ON state resistance during reverse battery	_	60	80		Vcc-Gnd=14V
Vcc op.	Operating voltage range	6	_	28		
V clamp 1	Vcc to Out clamp voltage 1	37	39	_	V	lout=30mA
V clamp 2	Vcc to Out clamp voltage 2		40	42		lout=4A (see Fig. 1)
Icc Off	Supply current when Off	_	4	9	μA	Vin=0V, Vout=0V
Icc On	Supply current when On		2.2	5	mA	Vin=5V
Vih	Input high threshold voltage	_	2.5	2.9		
Vil	Input low threshold voltage	1.5	2		V	
In hyst.	Input hysteresis	0.2	0.5	1		
lin On	Input current when device is On	_	45	100		Vin=5V
ldg	Dg leakage current	_	0.1	10	μA	Vdg=5V
Vdg	Low level DG voltage	—	0.25	0.4	V	ldg=1.6mA

Switching Electrical Characteristics Vcc=14V, Resistive load=6Ω, Vin=5V, Tj=25°C

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time	—	8	25		
Tr1	Rise time to Vout=Vcc-5V	—	5	20	μs	
Tr2	Rise time to Vout=0.9 x Vcc	—	8	35		
dV/dt (On)	Turn On dV/dt	_	1.5	2.5	V/µs	
EOn	Turn On energy	_	150	_	μJ	see Fig. 3
Tdoff	Turn-off delay time	_	20	45	110	
Tf	Fall time to Vout=0.1 x Vcc	_	9	30	μs	
dV/dt (Off)	Turn Off dV/dt	_	3	10	V/µs]
EOff	Turn Off energy		65		μJ	

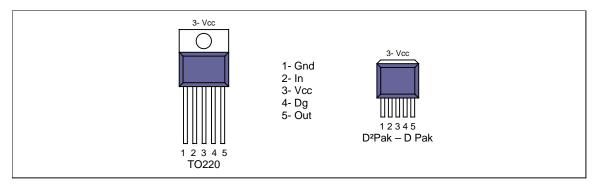
Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
llim	Internal current limit	10	16	23	А	Vout=0V
Tsd+	Over temperature high threshold	150(1)	165	_	°C	See fig. 2
Tsd-	Over temperature low threshold		158	_	C	See lig. 2
Vsc	Short-circuit detection voltage(2)	2	3	4		
UV			5	5.9		
UV hyst.		0.25	_	1.6	V	
VOL Off	Open load detection threshold	2	3	4		
I OL On	Open load detection threshold	0.15	0.4	0.55	A	

(1) Guaranteed by design

(2) Reference to Vcc

True Table

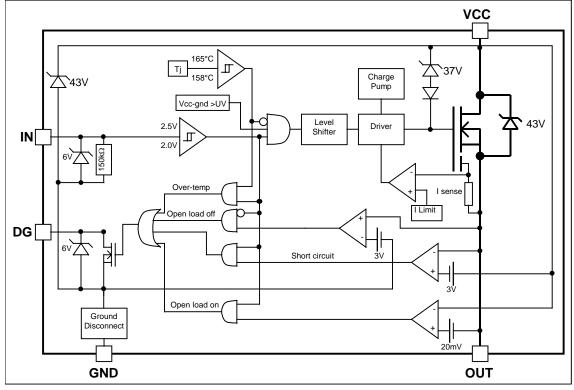

Operating Conditions	IN	OUT	DG
Normal	Н	Н	Н
Normal	L	L	Н
Open Load	Н	H	L
Open Load (3)	L	Н	L
Short circuit to Gnd	Н	L	L
Short circuit to Gnd	L	L	Н
Short circuit to Vcc	Н	Н	L (4)
Short circuit to Vcc (5)	L	Н	L
Over-temperature	Н	L	L
Over-temperature	L	L	Н

(3) With a pull-up resistor connected between the output and Vcc.

(4) Vds lower than 10mV.

(5) Without a pull-up resistor connected between the output and Vcc.

Lead Assignments



International

IPS6031(S)(R)PbF

Functional Block Diagram

All values are typical

International

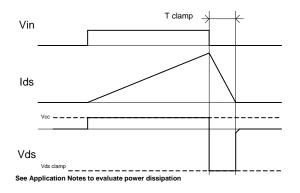


Figure 1 – Active clamp waveforms

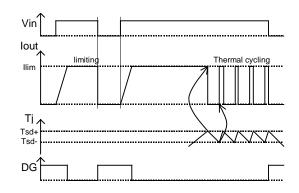
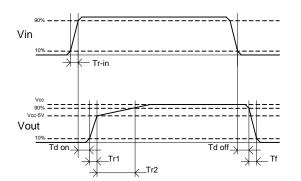
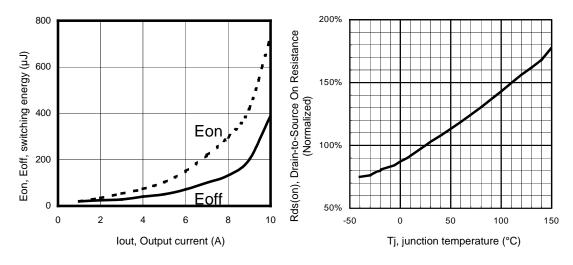
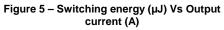



Figure 2 – Protection timing diagram




Dg Vcc Vclamp Gnd Out In ₹ L 14 5V Vout Vin л R Rem : 'nν During active clamp, Vload lout is negative

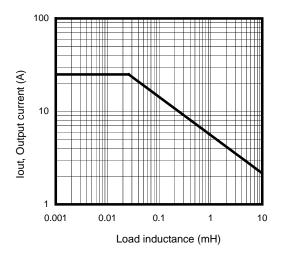

Figure 3 – Switching times definitions

Figure 4 – Active clamp test circuit

International

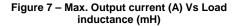


Figure 6 - Normalized Rds(on) (%) Vs Tj (°C)

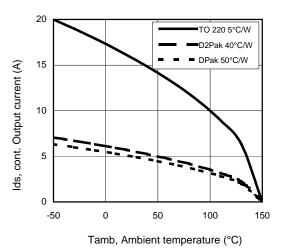
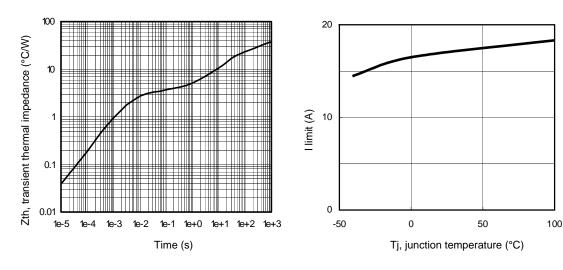
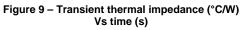
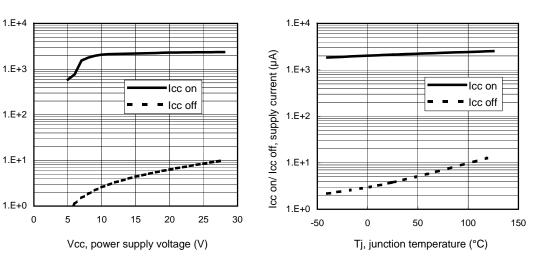
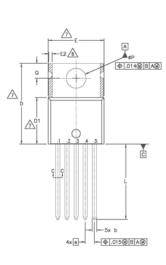




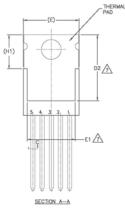

Figure 8 – Max. ouput current (A) Vs Ambient temperature (°C)

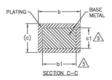
International

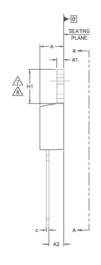
IPS6031(S)(R)PbF




Figure 11 – Icc on/ Icc off (µA) Vs Vcc (V)

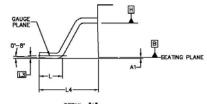

Figure 12 – Icc on/ Icc off (µA) Vs Tj (°C)


www.irf.com

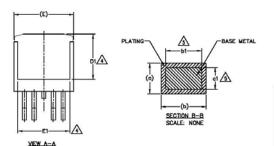

lcc on/ lcc off, supply current (µA)

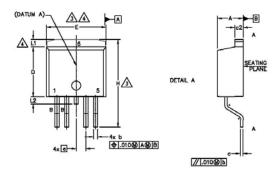
Case Outline - TO220 (5 lead) - Automotive Q100 PbF qualified

SY MBOL	DIMENSIONS					
B I	MILLIM	ETERS	INC	HES	NOI-WS	
Ľ	MIN.	MAX.	MIN.	MAX.	S	
A	3.56	4.83	.140	.190		
A1	0.51	1.40	.020	.055		
A2	2.03	2.92	.080	.115		
b	0.64	0.89	.025	.035		
b1	0.64	0.84	.025	.033	5	
c	0.36	0.61	.014	.024		
c1	0.36	0.56	.014	.022	5	
D	14.22	16.51	.560	.650	4	
D1	8.38	9.02	.330	.355		
D2	11.68	12.88	.460	.507	7	
E	9.65	10.67	.380	.420	4,7	
E1	6.86	8.89	.270	.350	7	
E2	-	0.76	-	.030	8	
e	1.70		.067			
H1 [5.84	6.86	.230	.270	7,8	
L	12.70	14.73	.500	.580		
øP	3.53	3.73	.139	.147		
Q	2.54	3.05	.100	.120		

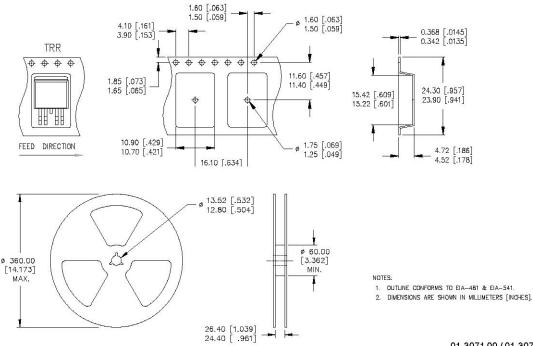

NOTES:

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994. 2.- DIMENSIONS ARE SHOWN IN INCOME (THE LOCATION)


- DIMENSIONNE AND TOLERANCING AS PER ASILE '14.5 Mm 1994.
 DIMENSIONNE AND TOLERANCING AS PER ASILE '14.5 Mm 1994.
 LEAD DIMENSION AND FINISH UNCONTROLLED IN 11.
 DIMENSION D, DI & E DO NOT INCLUDE MOLD FLASH.
 DIMENSION AND TO TOLED EXPLOSE DE ASIL.
 DIMENSION AND TO TOLED EXPLOSE TO FLASH.
 DIMENSION AT THE OUTSMITH TO BASE METAL ONLY.
 DIMENSION IN A 4 CH APPLY TO BASE METAL ONLY.
 DIMENSION IN A 4 CH APPLY TO BASE METAL ONLY.
 DIMENSION IN A CH APPLY TO BASE METAL ONLY.
 DIMENSION IN A CHAPTLY TO BASE METAL ONLY.

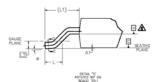

- 8.-
- MUMERISON E2 XH DEFINE ZONE WHERE STAMPING AND SINGULATION IRREGULARTIES ARE ALLOWED. OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) MERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9.-
- 10.- LEADS AND DRAIN ARE PLATED WITH 100% Sn

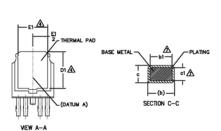
Case Outline 5 Lead - D2PAK - Automotive Q100 PbF MSL1 qualified

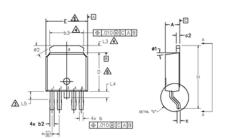


NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- CONTRACTOR DATE OF A CONTRACT OF A CONTRACT
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- S DIMENSION 61 AND CT APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-2638A.
- 9 LEADS AND DRAIN ARE PLATED : 100% Sh


					_
S Y M		DIMEN	ISIONS		N
BO	МШИ	METERS INCHES			NOTES
Ľ	MIN.	MAX.	MIN.	MAX.	S
٨	4.06	4.83	.160	.190	
A1	-	0.254	-	.010	
ь	0.51	0.99	.020	.039	4
b1	0.51	0.89	.020	.035	
c	0.38	0.74	.015	.029	
e1	0.38	0.58	.015	.023	4
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	-	
Ε	9.65	10.67	.380	.420	3
E1	6.22	-	.245	-	
e	1.70	BSC	.067	BSC	
н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
u	12	1.68	-	.066	
L2		1.78	-	.070	
L3	0.25	BSC	.010	BSC	
L4	4.78	5.28	.188	.208	

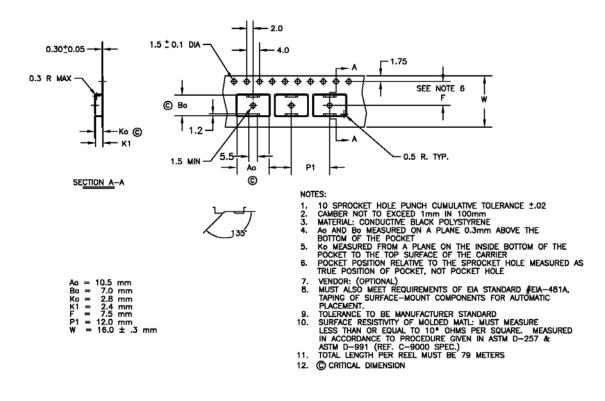

Tape & Reel 5 Lead - D2PAK



01-3071 00 / 01-3072 00

Case Outline 5 Lead – DPAK - Automotive Q100 PbF MSL1 qualified

S Y		DIMEN	SIONS		N
M B O	MILLIM	ETERS	INC	HES	0 T
L	MIN.	MAX.	MIN.	MAX.	Ê
A	2.18	2.39	.086	.094	
A1	-	0.13	-	.005	
ь	0.51	0.89	.020	.035	
b1	.051	0.84	.020	.033	2
b3	4.95	5.46	.195	.215	2
с	0.46	0.61	.018	.024	
c1	0.41	0.56	.016	.022	2
c2	0.46	0.89	.018	.035	
D	5.97	6.22	.235	.245	3
D1	5.21	-	.205	-	
Е	6.35	6.73	.250	.265	3
E1	4.32	-	.170	-	
e	1.14	BSC	.045	BSC	
н	9.40	10.41	.370	.410	
L	1.40	1.78	.055	.070	
L1	2.74	BSC	.108	REF.	
L2	0.51	BSC	.020	BSC	
L3	0.89	1.27	.035	.050	
L4	-	1.02	-	.040	
L5	1.14	1.52	.045	.060	
ø	0.	10*	0.	10"	
ø1	0.	15*	0.	15*	
ø2	28'	32'	28*	32*	


NOTES:

1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994

- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- A DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- 8.- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252.
- 10. LEADS AND DRAIN ARE PLATED WITH 100% Sn

International

Tape & Reel 5 Lead – DPAK

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. TO220, D2Pak and Dpak is MSL1 qualified This product has been designed and qualified for the Automotive [Q100] market. 11/25/2006

Downloaded from Arrow.com.