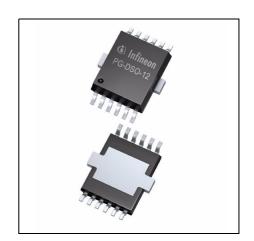


#### **Dual Low Drop Voltage Regulator**

**TLE 4473 GV53** 


**TLE 4473 GV52** 





#### **Features**

- Output 1: 300 mA, 3.3 V (±3%) or 2.6 V (±3%)
- Output 2: 180 mA, 5 V (±2%)
- Low quiescent current consumption
- Disable function separately for both outputs
- Wide operation range: up to 42 V
- Very low dropout voltage
- 2 independent reset circuits
- Watchdog
- Output protected against short circuit
- Wide temperature range: -40 °C to 150 °C
- Overtemperature protection
- Overload protection



#### **Functional Description**

The TLE 4473 is a monolithic integrated voltage regulator with two very low-drop outputs, Q1 for loads up to 300 mA and Q2 providing a maximum of 180 mA. An input voltage in the range of 5.6 V  $\leq V_{\text{I}} \leq$  45 V is transformed to  $V_{\text{Q2}} = 5.0$  V  $(\pm 2\%)$  and  $V_{\text{Q1}} = 3.3$  V  $\pm 3\%$  (TLE 4473 GV53) or  $V_{\text{Q1}} = 2.6$  V  $\pm 3\%$  (TLE 4473 GV52). The device is also available with dual 5 V output voltage, please refer to the TLE 4473 GV55 data sheet. Two inhibit pins allow a flexible power management. Both outputs can independently be enabled or disabled. Thus the current consumption of the application can be reduced to a minimum. The quiescent current of the TLE 4473 with both outputs disabled is < 1  $\mu$ A. The TLE 4473 is designed to supply microprocessor systems and sensors under the severe conditions of automotive applications and is therefore equipped with additional protection functions against overload, short circuit and overtemperature.

The device operates in the wide junction temperature range of -40 °C to 150 °C.

| Туре          | Package   |
|---------------|-----------|
| TLE 4473 GV53 | PG-DSO-12 |
| TLE 4473 GV52 | PG-DSO-12 |

Data Sheet 1 Rev. 1.1, 2008-09-19



The low drop regulator features a reset with adjustable power on delay for each of the outputs. In addition the output for the microcontroller supply comes up with a watchdog in order to supervise a microcontroller.

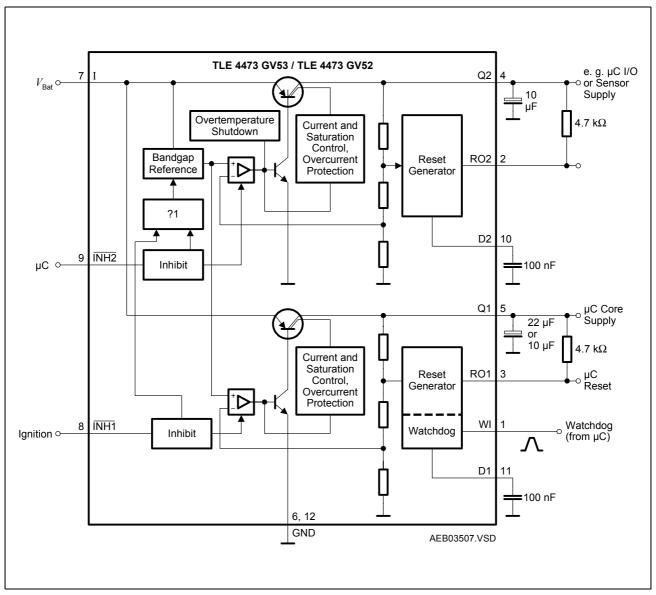



Figure 1 Block Diagram with Typical External Components



#### **Reset and Watchdog Behaviour:**

The reset output RO1 is in high-state if the voltage on the delay capacitor  $C_{\rm D1}$  is greater or equal  $V_{\rm DL1}$ . The delay capacitor  $C_{\rm D1}$  is charged with the current  $I_{\rm DC1}$  for output voltages greater than the reset threshold  $V_{\rm RT1}$ . If the output voltage drops below  $V_{\rm RT1}$  ("reset condition"), the delay capacitor  $C_{\rm D1}$  will be discharged rapidly. If  $V_{\rm D1}$  reaches  $V_{\rm DL1}$ , the reset output RO1 is set to low.

At power-on, the charging process of  $C_{\rm D1}$  starts from 0 V, which leads to the equation

$$t_{\rm D,\,on} = \frac{C_{\rm D1} \times V_{\rm DU1}}{I_{\rm DC1}} \tag{1}$$

for the power-on reset delay time.

When the voltage at the delay capacitor has reached  $V_{\rm DU1}$  and RO1 was set to high, the watchdog circuit is enabled and discharges  $C_{\rm D1}$  with the constant current  $I_{\rm DD1}$ .

If there is no rising edge observed at the watchdog input,  $C_{\rm D1}$  will be discharged down to  $V_{\rm DL1}$ , where the reset output RO1 will be set to low and  $C_{\rm D1}$  will be charged again with the current  $I_{\rm DC1}$  until  $V_{\rm D1}$  reaches  $V_{\rm DU1}$  and reset will be set high again.

If a watchdog pulse (rising edge at watchdog input WI) occurs during the discharge period,  $C_{\rm D1}$  is charged again and the reset output stays high. After  $V_{\rm D1}$  has reached  $V_{\rm DU1}$ , the periodical cycle starts again.

The watchdog timing is shown in **Figure 2**. The maximum duration between two watchdog pulses corresponds to the minimum watchdog trigger time  $T_{WI,tr}$ . Higher capacitances on pin D1 result in larger watchdog trigger time:

$$T_{WI,tr}|_{max} = 0.42 \text{ ms/nF} \times C_{D1}$$
 (2)

If the output voltage Q2 decreases below  $V_{\rm RT2}$ , the external capacitor  $C_{\rm D2}$  is discharged. When the voltage at this capacitor drops below  $V_{\rm DL2}$ , a reset signal is generated at pin 11 (RO2), i.e. the reset output is set to low-level. If the output voltage rises above the reset threshold,  $C_{\rm D2}$  will be charged with the constant current  $I_{\rm DC2}$ . After the power-on-reset time, the voltage at the capacitor reaches  $V_{\rm DU2}$  and the reset output will be set to high again. The value of the power-on-reset time can be set within a wide range depending of the capacitance of  $C_{\rm D2}$  using **Equation (1)** analogous for Q2.



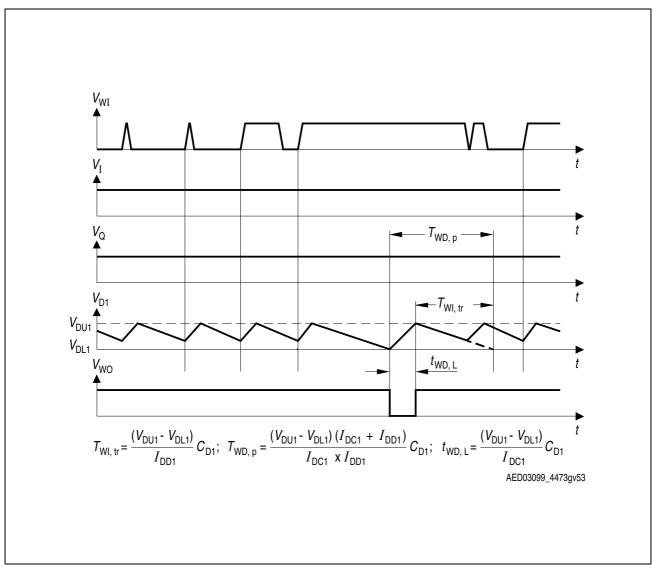



Figure 2 Watchdog Timing Schedule



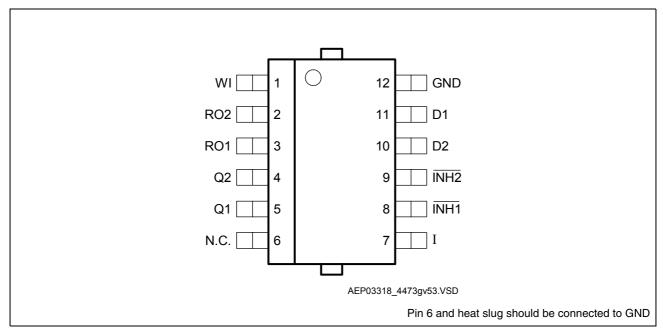



Figure 3 Pin Configuration TLE 4473 GV53, TLE 4473 GV52 (top view)

Table 1 Pin Definitions and Functions (TLE 4473 GV53, TLE 4473 GV52)

| Symbol | Function                                                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WI     | Watchdog input; input for watchdog pulses, positive edge triggered                                                                                                               |
| RO2    | Reset output for Q2; open collector output                                                                                                                                       |
| RO1    | Reset and watchdog output for Q1; open collector output                                                                                                                          |
| Q2     | Output voltage 2 (5 V); block to GND with a capacitor $C_{\rm Q2} \ge 22  \mu \rm F$ , ESR < 5 $\Omega$ at 10 kHz or $C_{\rm Q2} \ge 10  \mu \rm F$ , ESR < 4 $\Omega$ at 10 kHz |
| Q1     | Output voltage 1 (3.3 V/2.6 V); block to GND with a capacitor $C_{\rm Q1} \ge 10~\mu \rm F$ , ESR < 5 $\Omega$ at 10 kHz                                                         |
| N.C.   | Not connected; connect to GND                                                                                                                                                    |
| I      | Input voltage; block to GND directly at the IC with a ceramic capacitor.                                                                                                         |
| ĪNH1   | Inhibit input 1; low level at INH2 and INH1 disables Q2 and Q1                                                                                                                   |
| ĪNH2   | Inhibit input 2; low level disables Q2                                                                                                                                           |
| D2     | Reset Delay 2; connect a capacitor to set reset delay for Q2                                                                                                                     |
| D1     | Reset Delay 1; connect a capacitor to GND to set reset delay and watchdog timing for Q1                                                                                          |
| GND    | Ground                                                                                                                                                                           |
| N. C.  | Not connected; connect to GND                                                                                                                                                    |
|        | WI  RO2  RO1  Q2  Q1  N.C.  I  INH1  INH2  D2  D1  GND                                                                                                                           |



Table 2 Absolute Maximum Ratings

-40 °C <  $T_{\rm j}$  < 150 °C

| Parameter          | Symbol                | Limit | Values | Unit    | Remarks            |
|--------------------|-----------------------|-------|--------|---------|--------------------|
|                    |                       | Min.  | Max.   |         |                    |
| Input I            | <u>'</u>              | 1     | 1      | <u></u> |                    |
| Voltage            | $V_{I}$               | -42   | 45     | V       | _                  |
| Current            | $I_{I}$               | _     | _      | mA      | Internally limited |
| Stand-by Output Q2 | <u>'</u>              | 1     | 1      | <u></u> |                    |
| Voltage            | $V_{Q2}$              | -0.3  | 18     | V       | _                  |
| Current            | $I_{Q2}$              | _     | _      | mA      | Internally limited |
| Main Output Q1     | <u>'</u>              | 1     | 1      | <u></u> |                    |
| Voltage            | $V_{Q1}$              | -0.3  | 18     | V       | _                  |
| Current            | $I_{Q1}$              | _     | _      | mA      | Internally limited |
| Inhibit Input INH1 | 1                     | •     | 1      | •       |                    |
| Voltage            | $V_{\overline{INH1}}$ | -42   | 45     | V       | _                  |
| Current            | $I_{\overline{INH1}}$ | -2    | 2      | mA      | _                  |
| Inhibit Input INH2 |                       | •     | •      | 1       | •                  |
| Voltage            | $V_{\overline{INH2}}$ | -42   | 45     | V       | _                  |
| Current            | $I_{\overline{INH2}}$ | -2    | 2      | mA      | _                  |
| Reset Output RO1   |                       | •     | •      | 1       | •                  |
| Voltage            | $V_{RO1}$             | -0.3  | 18     | V       | _                  |
| Current            | $I_{RO1}$             | _     | _      | mA      | Internally limited |
| Reset Output RO2   |                       |       |        |         | ·                  |
| Voltage            | $V_{RO2}$             | -0.3  | 18     | V       | _                  |
| Current            | $I_{RO2}$             | _     | _      | mA      | Internally limited |
| Reset Delay D1     |                       | •     | •      | 1       | •                  |
| Voltage            | $V_{D1}$              | -0.3  | 7      | V       | _                  |
| Current            | $I_{D1}$              | -5    | 5      | mA      | _                  |
| Reset Delay D2     | •                     | -     |        |         |                    |
| Voltage            | $V_{D}$               | -0.3  | 7      | V       | _                  |
| Current            | $I_{D}$               | -5    | 5      | mA      | _                  |



 Table 2
 Absolute Maximum Ratings (cont'd)

-40  $^{\circ}$ C <  $T_{\rm j}$  < 150  $^{\circ}$ C

| Parameter                          | Symbol       | Limit | Values | Unit | Remarks          |
|------------------------------------|--------------|-------|--------|------|------------------|
|                                    |              | Min.  | Max.   |      |                  |
| Watchdog Input WI                  | 1            |       | - 1    |      |                  |
| Voltage                            | $V_{RADJ}$   | -0.3  | 7      | V    | _                |
| Current                            | $I_{RADJ}$   | -5    | 5      | mA   | _                |
| Temperatures                       | •            | 1     |        | •    | -                |
| Junction temperature               | $T_{\rm j}$  | -40   | 150    | °C   | _                |
| Storage temperature                | $T_{ m stg}$ | -50   | 150    | °C   | _                |
| <b>ESD Protection</b>              |              | 1     |        | •    | -                |
| Electrostatic Discharge<br>Voltage | $V_{ESD}$    | -2    | 2      | kV   | Human Body Model |

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.



**Table 3** Operating Range

| Parameter              | Symbol                 | Limit | Values | Unit | Remarks                                      |
|------------------------|------------------------|-------|--------|------|----------------------------------------------|
|                        |                        | Min.  | Max.   |      |                                              |
| Input voltage          | $V_{I}$                | 5.6   | 42     | V    | Q1 & Q2                                      |
|                        |                        | 4.5   | 42     | V    | only Q1 regulating                           |
| Junction temperature   | $T_{\rm j}$            | -40   | 150    | °C   | _                                            |
| Thermal Resistances PG | i-DSO-12               |       | •      | •    |                                              |
| Junction pin           | $R_{ m thj	ext{-}pin}$ | _     | 3      | K/W  | _                                            |
| Junction ambient       | $R_{thj-a}$            | _     | 115    | K/W  | PCB Heat Sink<br>Area 0 mm <sup>2 1)</sup>   |
| Junction ambient       | $R_{\text{thj-a}}$     | _     | 100    | K/W  | PCB Heat Sink<br>Area 100 mm <sup>2</sup> 1) |
| Junction ambient       | $R_{\text{thj-a}}$     | _     | 60     | K/W  | PCB Heat Sink<br>Area 300 mm <sup>2</sup> 1) |
| Junction ambient       | R <sub>thj-a</sub>     | _     | 48     | K/W  | PCB Heat Sink<br>Area 600 mm <sup>2</sup> 1) |

<sup>1)</sup> Package mounted on PCB  $80 \times 80 \times 1.5 \text{ mm}^3$ ;  $35 \,\mu$  Cu;  $5 \,\mu$  Sn; zero airflow.

Note: In the operating range the functions given in the circuit description are fulfilled. Integrated protection functions are designed to prevent IC destruction under fault conditions. Protection functions are not designed for repetitive operation.



#### **Electrical Characteristics**

 $V_{\rm I1}$  =13.5 V;  $V_{\rm INH1}$  = $V_{\rm INH2}$ = 5V; – 40 °C <  $T_{\rm j}$  < 150 °C; unless otherwise specified

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition |
|-----------|--------|--------------|------|------|------|----------------|
|           |        | min.         | typ. | max. |      |                |

#### **REGULATOR 2:**

## **Output Q2**

| Output voltage                                    | $V_{	extsf{Q2}}$           | 4.90 | 5.0 | 5.10 | V  | 1 mA < $I_{\text{Q2}}$ < 180 mA;<br>6 V < $V_{\text{\tiny I}}$ < 28 V |
|---------------------------------------------------|----------------------------|------|-----|------|----|-----------------------------------------------------------------------|
| Output current limitation                         | $I_{	extsf{Q2}}$           | 200  | 300 | 600  | mA | V <sub>Q2</sub> = 4.5 V                                               |
| Output drop voltage; $V_{DRQ2} = V_{12} - V_{Q2}$ | $V_{	exttt{DRQ2}}$         | _    | 300 | 600  | mV | $I_{\rm Q2}$ = 100 mA; <sup>1)</sup>                                  |
| Load regulation                                   | $\Delta V_{	t Q2,Lo}$      | _    | 15  | 50   | mV | 1 mA $< I_{Q2} <$ 200 mA;                                             |
| Line regulation                                   | $\Delta V_{	extsf{Q2,Li}}$ | _    | 5   | 20   | mV | $I_{Q2}$ = 1 mA;<br>6 V < $V_{I}$ < 28 V                              |
| Power supply ripple rejection                     | PSRR                       | _    | 65  | _    | dB | $f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 1 $V_{\rm pp}$                    |

## **Current Consumption**

|                                                                     |         | - | -   |    |                                                                                                                                           |
|---------------------------------------------------------------------|---------|---|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------|
| Quiescent current;<br>stand-by $I_{\rm q} = I_{\rm I} - I_{\rm O2}$ | $I_{q}$ | _ | 165 | μΑ | TLE 4473 GV52;<br>$I_{\rm Q2} = 500  \mu \rm A;  T_{\rm j} = 25  ^{\circ} C;$<br>$V_{\rm INH1} < V_{\rm INH1  OFF}  (Q1  off)$            |
|                                                                     |         | _ | 205 | μΑ | TLE 4473 GV52;<br>$I_{Q2}$ = 500 $\mu$ A; $T_{j}$ = 85 °C;<br>$V_{INH1} < V_{INH1 OFF}$ (Q1 off)                                          |
|                                                                     |         | _ | 180 | μΑ | TLE 4473 GV53;<br>$I_{Q2} = 500  \mu\text{A};  T_{j} = 25  ^{\circ}\text{C};$<br>$V_{\text{INH1}} < V_{\text{INH1 OFF}}  (\text{Q1 off})$ |
|                                                                     |         | _ | 210 | μΑ | TLE 4473 GV53;<br>$I_{Q2}$ = 500 $\mu$ A; $T_{j}$ = 85 °C;<br>$V_{INH1} < V_{INH1 OFF} (Q1 off)$                                          |
|                                                                     |         | _ | 235 | μΑ | $I_{\rm Q2} = 500  \mu \text{A};$<br>$V_{\rm INH1} < V_{\rm INH1  OFF}  (\rm Q1  off)$                                                    |



 $V_{\rm I1}$  =13.5 V;  $V_{\rm INH1}$  = $V_{\rm INH2}$ = 5V; - 40  $^{\circ}$ C <  $T_{\rm j}$  < 150  $^{\circ}$ C; unless otherwise specified

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition |
|-----------|--------|--------------|------|------|------|----------------|
|           |        | min.         | typ. | max. |      |                |

## **Current Consumption (cont'd)**

| Quiescent current;<br>stand-by $I_{q} = I_{I} - I_{Q2}$ | $I_{q}$ |   |   | 5 | mA | $I_{\rm Q2}$ = 100 mA;<br>$V_{\rm INH1}$ < $V_{\rm INH1\ OFF}$ (Q1 off) |
|---------------------------------------------------------|---------|---|---|---|----|-------------------------------------------------------------------------|
| Quiescent current; inhibited                            | $I_{q}$ | _ | _ | 1 | μΑ | $V_{INH1} = V_{INH2} = 0V;$<br>$T_{J} < 85^{\circ}C$                    |

# Inhibit Input INH2

| Turn-on Voltage  | $V_{\overline{	ext{INH2}}	ext{ON}}$    | _          | _   | 2.3 | V  | V <sub>Q2</sub> on                              |
|------------------|----------------------------------------|------------|-----|-----|----|-------------------------------------------------|
| Turn-off Voltage | $V_{\overline{	ext{INH2}}	ext{OFF}}$   | 0.8        | _   | _   | V  | V <sub>Q2</sub> off                             |
| H-input current  | $I_{\overline{INH2}ON}$                | - 1        | 0.5 | 3   | μΑ | $V_{\text{INH2}} = 5 \text{ V}$                 |
| L-input current  | $I_{\overline{	ext{INH2}} 	ext{ OFF}}$ | <b>– 1</b> | 0.1 | 1   | μΑ | $0 \text{ V} < V_{\text{INH2}} < 0.8 \text{ V}$ |

# **Reset Timing D2**

| Charge current         | $I_{	exttt{DC2}}$                               | 5.0 | 9.0  | 13.0 | μΑ | $V_{\rm D2} = 0.7 \text{ V}$ |
|------------------------|-------------------------------------------------|-----|------|------|----|------------------------------|
| Upper timing threshold | $V_{	extsf{DU2}}$                               | 1.6 | 1.8  | 2.2  | V  | _                            |
| Lower timing threshold | $V_{	extsf{DL2}}$                               | 0.3 | 0.45 | 0.6  | V  | _                            |
| Saturation Voltage     | $V_{\scriptscriptstyle 	extsf{D2},	extsf{SAT}}$ |     |      | 100  | mV | $V_{Q2} < V_{RT2}$           |
| Reset delay time       | $T_{	extsf{RD2}}$                               | 12  | 20   | 28   | ms | $C_{\rm D2}$ = 100 nF        |
| Reset reaction time    | $T_{rr}$                                        | _   |      | 10   | μs | $C_{\rm D2}$ = 100 nF        |



 $V_{\rm I1}$  =13.5 V;  $V_{\rm INH1}$  = $V_{\rm INH2}$ = 5V; - 40 $^{'}$ °C <  $T_{\rm j}$  < 150 °C; unless otherwise specified

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition |
|-----------|--------|--------------|------|------|------|----------------|
|           |        | min.         | typ. | max. |      |                |

## **Reset Output RO2**

| Reset switching threshold | $V_{	extsf{RT2}}$              | 4.5 | 4.65 | 4.8 | V  | _                                                                                                                           |
|---------------------------|--------------------------------|-----|------|-----|----|-----------------------------------------------------------------------------------------------------------------------------|
| Reset output current      | I <sub>RO2</sub>               | _   | _    | 1.4 | mA | Collector current of RO1, power good, reset still delayed.  V <sub>Q2</sub> =5V, V <sub>D2</sub> =0V,V <sub>RO2</sub> =0.3V |
| Reset output low voltage  | $V_{\scriptscriptstyle{RO2L}}$ | _   | 0.15 | 0.3 | V  | $V_{\rm Q2} \ge 1 \text{ V, V}_{\rm D2} = 0 \text{V,}$<br>$I_{\rm RO2} = 0.5 \text{mA}$                                     |
| Reset high voltage        | $V_{\scriptscriptstyle{RO2H}}$ | 4.5 | _    | _   | V  | $R_{RO2,ext}=4.7k\Omega$                                                                                                    |

#### **REGULATOR 1:**

## **Output Q1**

| Output voltage                    | $V_{	t Q12}$               | 3.20 | 3.3  | 3.40 | V  | TLE 4473 GV53<br>1 mA < $I_{\rm Q1}$ < 300 mA;<br>4.5 V < $V_{\rm I}$ < 28 V                |
|-----------------------------------|----------------------------|------|------|------|----|---------------------------------------------------------------------------------------------|
| Output voltage                    | $V_{	extsf{Q12}}$          | 2.52 | 2.60 | 2.68 | V  | TLE 4473 GV52<br>1 mA < $I_{Q1}$ < 300 mA;<br>4.5 V < $V_{I}$ < 28 V                        |
| Output current limitation         | $I_{Q1}$                   | 350  | 500  | 600  | mA | $V_{Q1} = 3.0 \text{ V}$<br>(TLE 4473 GV53);<br>$V_{Q1} = 2.3 \text{ V}$<br>(TLE 4473 GV52) |
| Load regulation                   | $\Delta V_{	extsf{Q1,Lo}}$ | _    | 5    | 50   | mV | 5 mA $< I_{Q1} <$ 300 mA;                                                                   |
| Line regulation                   | $\Delta V_{	extsf{Q1,Li}}$ | _    | 5    | 20   | mV | $I_{Q1} = 5 \text{ mA};$<br>6 V < $V_1$ < 28 V                                              |
| Power-Supply-<br>Ripple-Rejection | PSRR                       | _    | 65   | _    | dB | $f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 1V <sub>pp</sub>                                        |



 $V_{\rm I1}$  =13.5 V;  $V_{\rm INH1}$  = $V_{\rm INH2}$ = 5V; - 40 $^{'}$ °C <  $T_{\rm j}$  < 150 °C; unless otherwise specified

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition |
|-----------|--------|--------------|------|------|------|----------------|
|           |        | min.         | typ. | max. |      |                |

## **Current Consumption**

| Quiescent current;                | $I_{q}$ | _ | 200 | 265 | μΑ | TLE 4473 GV52;                                                         |
|-----------------------------------|---------|---|-----|-----|----|------------------------------------------------------------------------|
| $I_{q} = I_{I} - I_{Q1} - I_{Q2}$ |         |   |     |     |    | $I_{Q1} = 500 \ \mu A;$                                                |
|                                   |         |   |     |     |    | Q1 on; Q2 off; $T_{j}$ < 85°C                                          |
|                                   |         | _ | 210 | 280 | μΑ | TLE 4473 GV53;                                                         |
|                                   |         |   |     |     |    | $I_{Q1} = 500 \ \mu A;$                                                |
|                                   |         |   |     |     |    | Q1 on; Q2 off; $T_j$ < 85°C                                            |
|                                   |         | _ | 7   | 20  | mA | $I_{Q1} = 300 \text{ mA}$                                              |
|                                   |         |   |     |     |    | $I_{Q2} = 500  \mu A,$                                                 |
|                                   |         |   |     |     |    | V <sub>Q1</sub> & V <sub>Q2</sub> on                                   |
|                                   |         | _ | 250 | 500 | μΑ | $I_{Q2} = I_{Q1} = 500 \mu A;$<br>V <sub>Q1</sub> & V <sub>Q2</sub> on |
|                                   |         |   |     |     |    | V <sub>Q1</sub> & V <sub>Q2</sub> on                                   |

# Inhibit Input INH1

| Turn-on Voltage  | $V_{\overline{	ext{INH1}} 	ext{ ON}}$  | _          | _   | 2.3 | ٧  | V <sub>Q1</sub> on                              |
|------------------|----------------------------------------|------------|-----|-----|----|-------------------------------------------------|
| Turn-off Voltage | $V_{\overline{	ext{INH1}} 	ext{ OFF}}$ | 0.8        | _   | _   | V  | V <sub>Q1</sub> off                             |
| H-input current  | $I_{\overline{INH1}ON}$                | <b>– 1</b> | 0.5 | 3   | μΑ | $V_{\text{INH1}}$ = 5 V                         |
| L-input current  | $I_{\overline{INH1}OFF}$               | <b>– 1</b> | 0.1 | 1   | μΑ | $0 \text{ V} < V_{\text{INH1}} < 0.8 \text{ V}$ |

# Watchdog and Reset Timing D1

| Charge current         | $I_{	exttt{DC1}}$            | 3.0 | 7.0  | 11.0 | μΑ | $V_{\rm D1} = 0.7 \ { m V}$ |
|------------------------|------------------------------|-----|------|------|----|-----------------------------|
| Discharge current      | $I_{	extsf{DD1}}$            | 1.1 | 1.5  | 3.7  | μΑ | $V_{\rm D1} = 0.7 \ { m V}$ |
| Upper timing threshold | $V_{\scriptscriptstyle DU1}$ | 0.7 | 1.1  | 1.6  | V  | _                           |
| Lower timing threshold | $V_{\scriptscriptstyle DL1}$ | 0.2 | 0.35 | 0.6  | V  | _                           |



 $V_{\rm I1}$  =13.5 V;  $V_{\rm INH1}$  = $V_{\rm INH2}$ = 5V; - 40  $^{\circ}$ C <  $T_{\rm j}$  < 150  $^{\circ}$ C; unless otherwise specified

| Parameter | Symbol | Limit Values |      |      | Unit | Test Condition |
|-----------|--------|--------------|------|------|------|----------------|
|           |        | min.         | typ. | max. |      |                |

## Watchdog and Reset Timing D1 (cont'd)

| Saturation Voltage    | $V_{\scriptscriptstyle 	extsf{D1,SAT}}$ |    |    | 100 | mV | $V_{Q1} < V_{RT2}$           |
|-----------------------|-----------------------------------------|----|----|-----|----|------------------------------|
| Watchdog trigger time | $T_{WI,tr}$                             | 24 | 32 | 40  | ms | $C_{\rm D1} = 100 \; \rm nF$ |
| Reset delay time      | $T_{\mathtt{RD1}}$                      | 11 | 17 | 23  | ms | $C_{\rm D1}$ = 100 nF        |
| Reset reaction time   | $T_{rr}$                                | _  |    | 5.0 | μs | $C_{\rm D1}$ = 100 nF        |

#### **Reset Output RO1**

| Reset switching threshold | $V_{	ext{RT1}}$                  | 2.97 | 3.08 | 3.18 | V  | TLE 4473 GV53                                                                                                                                                                                                    |
|---------------------------|----------------------------------|------|------|------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                  | 2.34 | 2.42 | 2.50 | ٧  | TLE 4473 GV52                                                                                                                                                                                                    |
| Reset threshold headroom  | $V_{\scriptscriptstyle{R1HEAD}}$ | 100  | _    | _    | mV | TLE 4473 GV53                                                                                                                                                                                                    |
| Reset threshold headroom  | $V_{	extsf{R1HEAD}}$             | 80   | _    | _    | mV | TLE 4473 GV52                                                                                                                                                                                                    |
| Reset output current      | I <sub>RO1</sub>                 | _    | _    | 1.4  | mA | Collector current of RO1, power good, reset still delayed. $V_{Q1}=3.30 \text{ V}$ (TLE 4473 GV53), $V_{Q1}=2.60 \text{ V}$ (TLE 4473 GV52); $V_{Q2}=5.0 \text{ V};$ $V_{D1}=0 \text{ V}, V_{RO1}=0.3 \text{ V}$ |
| Reset output low voltage  | $V_{\scriptscriptstyle{RO1L}}$   | _    | 0.1  | 0.3  | V  | $V_{\rm Q1} \ge 1 \text{ V, V}_{\rm D1} = 0 \text{V,}$<br>$I_{\rm RO1} = 0.5 \text{mA}$                                                                                                                          |
| Reset output high voltage | $V_{\scriptscriptstyle{RO1H}}$   | 2.45 |      |      | V  | $R_{RO1,ext}$ =4.7kΩ connected to Q1;TLE 4473 GV52                                                                                                                                                               |
| Reset output high voltage | $V_{\scriptscriptstyle{RO1H}}$   | 3.15 | _    | _    | V  | $R_{RO1,ext}$ =4.7kΩ connected to Q1;TLE 4473 GV53                                                                                                                                                               |

<sup>1)</sup> Drop voltage =  $V_{\rm I} - V_{\rm Q}$  (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)



## **Package Outlines**

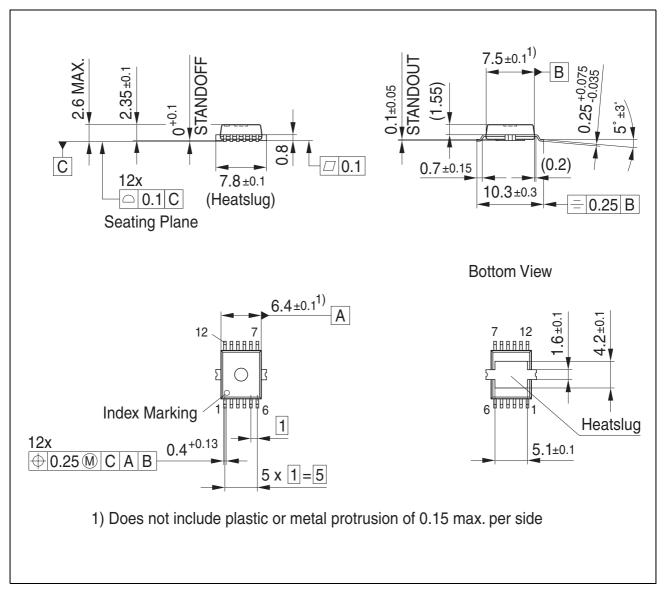



Figure 4 PG-DSO-12 (Plastic Dual Small Outline)

### Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).



# **Revision History**

| Version  | Date       | Changes                                                                                                                                                                                                                                                                                      |
|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev. 1.1 | 2008-19-09 | Initial version of RoHS-compliant derivate of TLE 4473 GV53 and TLE 4473 GV52  Page 1: AEC certified statement added  Page 1 and Page 14: RoHS compliance statement and Green product feature added  Page 1 and Page 14: Package changed to RoHS compliant version  Legal Disclaimer updated |
| Rev. 1.0 | 2004-07-14 | Initial version                                                                                                                                                                                                                                                                              |

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": <a href="http://www.infineon.com/products">http://www.infineon.com/products</a>.

SMD = Surface Mounted Device

Dimensions in mm

Edition 2008-09-19
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.