
Cool MOS™ Power Transistor

Feature

- New revolutionary high voltage technology
- ullet Worldwide best $R_{
 m DS(on)}$ in SOT 223
- Ultra low gate charge
- Extreme dv/dt rated
- Ultra low effective capacitances
- Improved transconductance
- Qualified according to JEDEC⁰⁾ for target applications

V_{DS}	600	٧
R _{DS(on)}	0.95	Ω
I_{D}	0.8	Α

SOT-223

Туре	Package	Ordering Code	Marking
SPN04N60S5	SOT-223	Q67040-S4211	04N60S5

gate pin 1 source pin3

Maximum Ratings

Parameter	Symbol	Value	Unit
Continuous drain current	I _D		А
<i>T</i> _A = 25 °C		0.8	
<i>T</i> _A = 70 °C		0.65	
Pulsed drain current, t_p limited by T_{jmax}	I _{D puls}	3	
T _A = 25 °C			
Gate source voltage	$V_{ m GS}$	±20	V
Gate source voltage AC (f >1Hz)	$V_{ m GS}$	±30	
Power dissipation, $T_A = 25^{\circ}C$	P _{tot}	1.8	W
Operating and storage temperature	T _j , T _{stg}	-55 +150	°C

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain Source voltage slope	dv/dt	20	V/ns
$V_{\rm DS}$ = 480 V, $I_{\rm D}$ = 4.5 A, $T_{\rm j}$ = 125 °C			

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Thermal resistance, junction - soldering point	R _{thJS}	-	20	-	K/W
SMD version, device on PCB:	R _{thJA}				
@ min. footprint		-	110	_	
@ 6 cm ² cooling area ¹⁾		-	-	70	
Soldering temperature,	T_{sold}	-	-	260	°C
1.6 mm (0.063 in.) from case for 10s					

Electrical Characteristics, at T_j=25°C unless otherwise specified

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =0.25mA	600	1	-	V
Drain-Source avalanche	V _{(BR)DS}	V _{GS} =0V, I _D =4.5A	-	700	-	
breakdown voltage						
Gate threshold voltage	V _{GS(th)}	I_{D} =200 μ A, V_{GS} = V_{DS}	3.5	4.5	5.5	
Zero gate voltage drain current	I _{DSS}	V _{DS} =600V, V _{GS} =0V,				μA
		<i>T</i> _j =25°C,	-	0.5	1	
		<i>T</i> _j =150°C	-	-	50	
Gate-source leakage current	IGSS	V _{GS} =20V, V _{DS} =0V	-	-	100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10V, I _D =2.8A,				Ω
		<i>T</i> _j =25°C	-	8.0	0.95	
		<i>T</i> _j =150°C	-	2.3	-	
Gate input resistance	R _G	f=1MHz, open Drain	-	20	-	

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	
Characteristics	•	•	•	•	,	
Transconductance	g_{fs}	$V_{\rm DS} \ge 2*I_{\rm D}*R_{\rm DS(on)max}$, $I_{\rm D} = 0.65 {\rm A}$	-	1	-	S
Input capacitance	C_{iss}	$V_{\rm GS}$ =0V, $V_{\rm DS}$ =25V,	-	600	-	pF
Output capacitance	C_{oss}	<i>f</i> =1MHz	-	325	-	
Reverse transfer capacitance	C_{rss}		-	15	-	
Effective output capacitance, ²⁾	C _{o(er)}	V _{GS} =0V,	-	20	-	pF
energy related	, ,	V _{DS} =0V to 480V				
Effective output capacitance,3)	C _{o(tr)}		-	35	-	
time related	, ,					
Turn-on delay time	$t_{d(on)}$	V _{DD} =350V, V _{GS} =0/10V,	-	40	_	ns
Rise time	t _r	$I_{\rm D}$ =0.8A, $R_{\rm G}$ =18 Ω	-	20	-]
Turn-off delay time	t _{d(off)}		-	130	-	
Fall time	t _f		-	30	-	

Gate Charge Characteristics

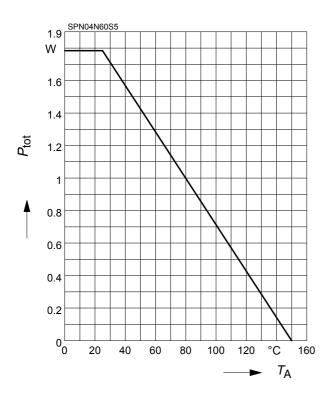
Gate to source charge	Q_{gs}	V _{DD} =350V, I _D =0.8A	-	4.1	-	nC
Gate to drain charge	Q_{gd}		-	9.2	-	
Gate charge total	Q_g	V _{DD} =350V, I _D =0.8A,	-	17	-	
		V _{GS} =0 to 10V				
Gate plateau voltage	V _(plateau)	V _{DD} =350V, I _D =0.8A	-	8	-	V

⁰J-STD20 and JESD22

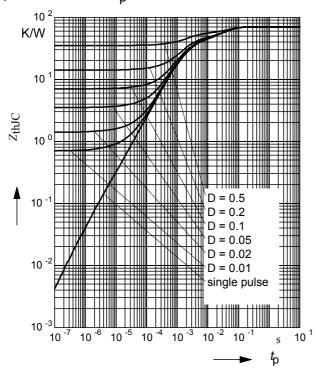
 $^{^{1}\}text{Device}$ on $40\text{mm}^{*}40\text{mm}^{*}1.5\text{mm}$ epoxy PCB FR4 with 6cm^{2} (one layer, 70 μm thick) copper area for drain connection. PCB is vertical without blown air.

 $^{^2}C_{\mathrm{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

 $^{^3}C_{\mathrm{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

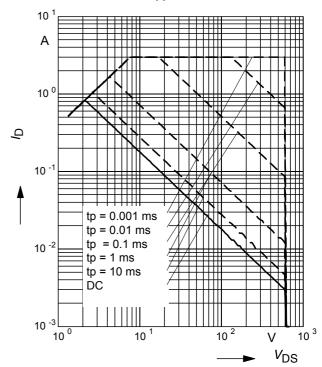

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Conditions	Values		Unit	
			min.	typ.	max.	
Inverse diode continuous	IS	<i>T</i> _A =25°C	-	-	0.8	Α
forward current						
Inverse diode direct current,	I _{SM}		-	-	3	
pulsed						
Inverse diode forward voltage	V_{SD}	V _{GS} =0V, I _F =I _S	-	0.85	1.05	V
Reverse recovery time	<i>t</i> _{rr}	V_{R} =350V, I_{F} = I_{S} ,	-	200	-	ns
Reverse recovery charge	Q _{rr}	d <i>i_F</i> /d <i>t</i> =100A/µs	-	1.2	-	μC


1 Power dissipation

$$P_{\text{tot}} = f(T_{A})$$

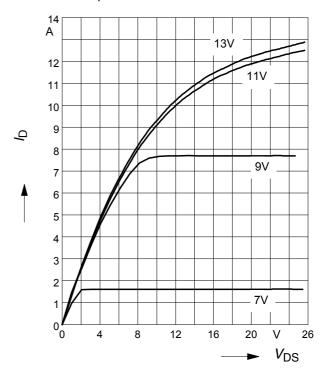
3 Transient thermal impedance


$$Z_{\text{thJC}} = f(t_p)$$

parameter: $D = t_p/T$

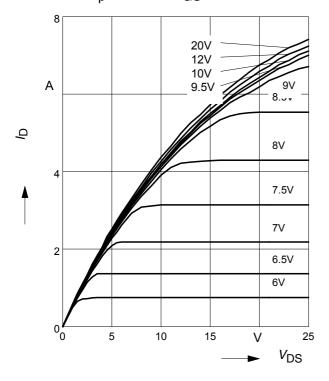
2 Safe operating area

$$I_{\mathsf{D}} = f(\ V_{\mathsf{DS}}\)$$

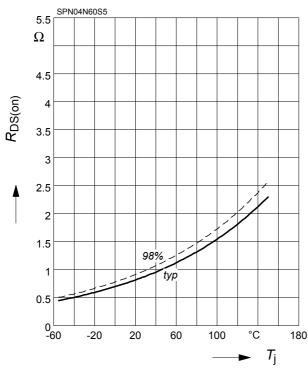

parameter : D = 0 , $T_A = 25$ °C

4 Typ. output characteristic

 $I_D = f(V_{DS}); T_j=25$ °C

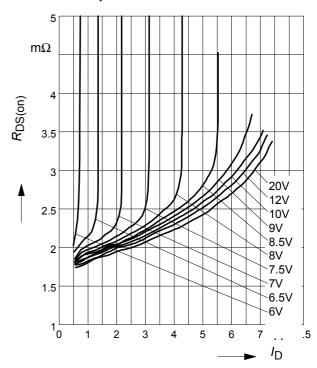

parameter: $t_p = 10 \mu s$, V_{GS}

5 Typ. output characteristic

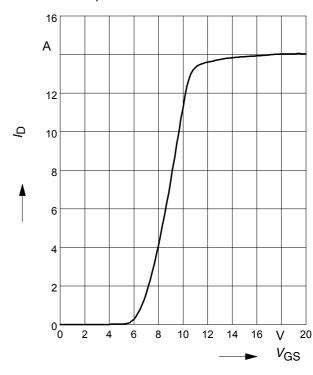

 $I_{\rm D}$ = $f(V_{\rm DS})$; $T_{\rm j}$ =150°C parameter: $t_{\rm p}$ = 10 μ s, $V_{\rm GS}$

7 Drain-source on-state resistance

 $R_{\mathrm{DS}(\mathrm{on})} = f(T_{\mathrm{j}})$


parameter : I_D = 0.65 A, V_{GS} = 10 V

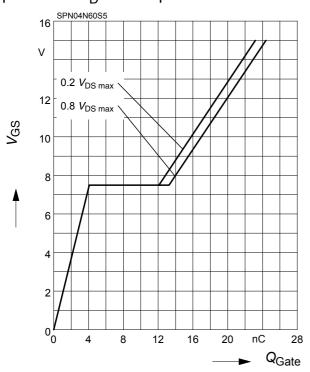
6 Typ. drain-source on resistance


 $R_{\mathrm{DS(on)}} = f(I_{\mathrm{D}})$

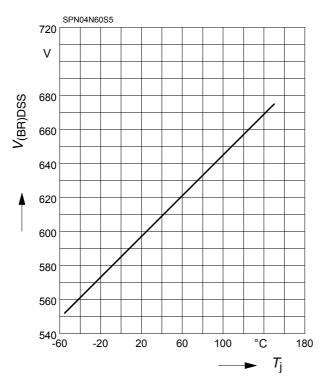
parameter: T_i =150°C, V_{GS}

8 Typ. transfer characteristics

 $I_{\rm D}$ = $f(V_{\rm GS})$; $V_{\rm DS}$ $\geq 2 \times I_{\rm D} \times R_{\rm DS(on)max}$ parameter: $t_{\rm p}$ = 10 μ s

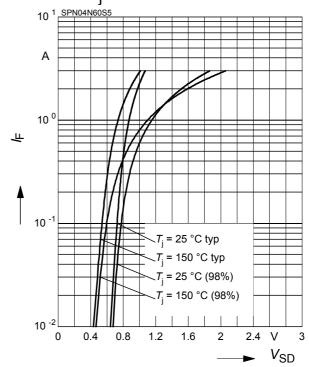


9 Typ. gate charge


 $V_{GS} = f (Q_{Gate})$

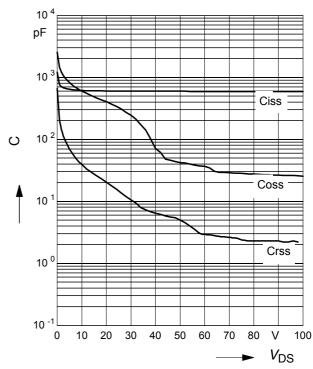
parameter: I_D = 0.8 A pulsed

11 Drain-source breakdown voltage


$$V_{(BR)DSS} = f(T_j)$$

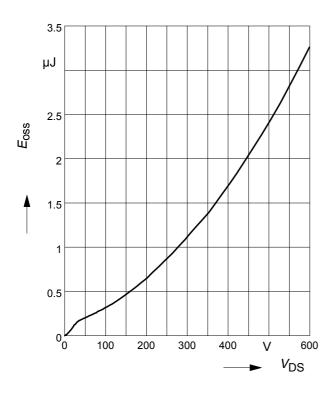
10 Forward characteristics of body diode

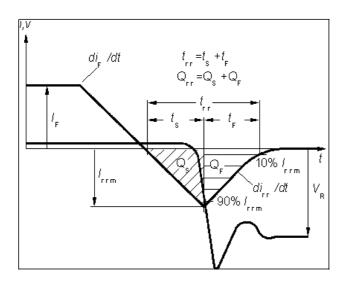
$$I_{\mathsf{F}} = f(\mathsf{V}_{\mathsf{SD}})$$


parameter: T_i , $t_p = 10 \mu s$

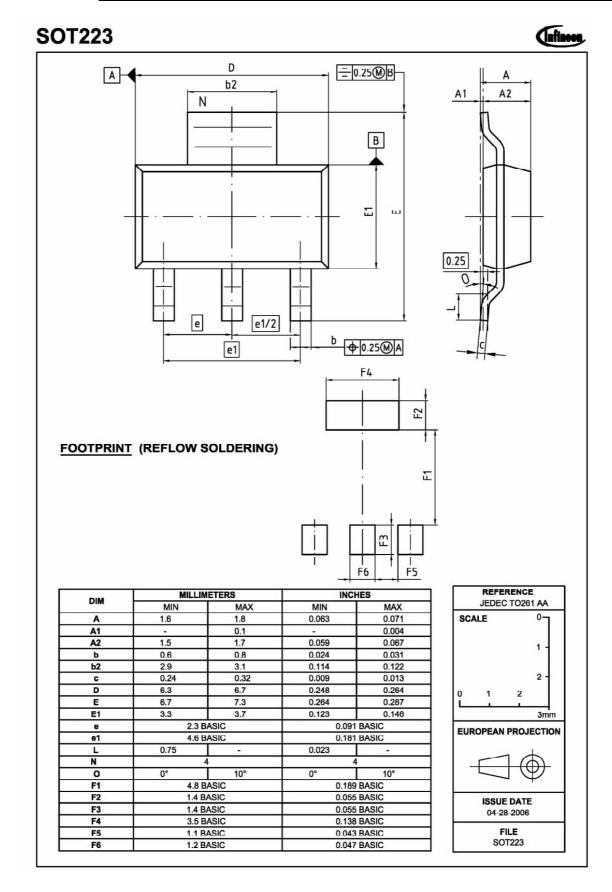
12 Typ. capacitances

 $C = f(V_{DS})$


parameter: V_{GS} =0V, f=1 MHz



13 Typ. $C_{\rm OSS}$ stored energy


$$E_{\rm oss} = f(V_{\rm DS})$$

Definition of diodes switching characteristics

Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.